命題“?x∈[-1,1],x2-3x+1<0”的否定是
 
考點(diǎn):命題的否定
專(zhuān)題:簡(jiǎn)易邏輯
分析:直接利用特稱(chēng)命題的否定是全稱(chēng)命題寫(xiě)出結(jié)果即可.
解答: 解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,
所以命題“?x∈[-1,1],x2-3x+1<0”的否定是:?x∈[-1,1],x2-3x+1≥0.
故答案為:?x∈[-1,1],x2-3x+1≥0.
點(diǎn)評(píng):本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x•lnx,g(x)=ax3-
1
2
x-
2
3e

(1)求f(x)的單調(diào)增區(qū)間和最小值;
(2)若函數(shù)y=f(x)與函數(shù)y=g(x)在交點(diǎn)處存在公共切線(xiàn),求實(shí)數(shù)a的值;
(3)若x∈(0,e2]時(shí),函數(shù)y=f(x)的圖象恰好位于兩條平行直線(xiàn)l1:y=kx;l2:y=kx+m之間,當(dāng)l1與l2間的距離最小時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、棱柱的底面一定是平行四邊形
B、棱錐被平面分成的兩部分不可能都是棱錐
C、圓臺(tái)平行于底面的截面是圓面
D、半圓繞其直徑所在直線(xiàn)旋轉(zhuǎn)一周形成球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的底面半徑為1,且這個(gè)圓錐的側(cè)面展開(kāi)圖形是一個(gè)半圓,則該圓錐的母線(xiàn)長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
<0;
④f(
x1+x2
2
)>
f(x1)+f(x2)
2

當(dāng)f(x)=lnx時(shí),上述結(jié)論中正確的序號(hào)是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a+b≠3”是“a≠1或b≠2”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,2),直線(xiàn)l:y=2x+1.
(1)求點(diǎn)A關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo);
(2)當(dāng)點(diǎn)B,C分別在x軸和直線(xiàn)l上運(yùn)動(dòng)時(shí),求△ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓
x2
4
+
y2
3
=1的左焦點(diǎn)為圓心,長(zhǎng)軸長(zhǎng)為半徑的圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=x+
a
x
(a>0)在(0 , 
a
]
上是減函數(shù),在[
a
 , +∞)
上是增函數(shù).若f(x)=x+
4
x
定義域?yàn)閇1,m],值域?yàn)閇4,5],則m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案