下列說(shuō)法正確的是( 。
A、棱柱的底面一定是平行四邊形
B、棱錐被平面分成的兩部分不可能都是棱錐
C、圓臺(tái)平行于底面的截面是圓面
D、半圓繞其直徑所在直線旋轉(zhuǎn)一周形成球
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái)),棱柱的結(jié)構(gòu)特征
專題:規(guī)律型
分析:根據(jù)柱、錐、臺(tái)、球的定義,可得結(jié)論.
解答: 解:根據(jù)柱、錐、臺(tái)、球的定義,可得圓臺(tái)平行于底面的截面是圓面,
故選:C.
點(diǎn)評(píng):本題考查柱、錐、臺(tái)、球的定義,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O xyz中,一個(gè)四面體的頂點(diǎn)坐標(biāo)分別是(0,0,0),(1,0,1),(1,1,0),(0,1,1),且該四面體的俯視圖如圖,則左視圖為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3lnx+x2-
3
x+
3
在點(diǎn)(
3
,f(
3
))
處的切線斜率是( 。
A、-2
3
B、
3
C、2
3
D、4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)內(nèi)是增加的,又f(3)=0,則不等式
f(x)-f(-x)
x
<0的解集為( 。
A、(-3,0)∪(3,+∞)
B、(-3,0)∪(0,3)
C、(-∞,-3)∪(3,+∞)
D、(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=1,nan-1=(n-1)an-n(n-1),n≥2且n∈N+
(Ⅰ)證明:數(shù)列{
an
n
}
是等差數(shù)列;
(Ⅱ)設(shè)bn=3n-1
an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=4x2-kx-8在區(qū)間[1,+∞)是單調(diào)函數(shù),那么實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a≠0a、b為常數(shù))滿足f(1-x)=f(1+x),且方程f(x)=x有兩相等實(shí)根
(1)求f(x)的解析式;
(2)在區(qū)間x∈[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈[-1,1],x2-3x+1<0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC和△DEF,則“這兩個(gè)三角形全等”是“這兩個(gè)三角形面積相等”的
 
條件(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中的一個(gè)).

查看答案和解析>>

同步練習(xí)冊(cè)答案