用反證法證明命題“在一個三角形的三個內角中,至少有2個銳角”時,假設命題的結論不成立的正確敘述是“在一個三角形的三個內角中,
 
個銳角”.
考點:反證法與放縮法
專題:概率與統(tǒng)計
分析:一些正面詞語的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;
“至多有一個”的否定:“至少有兩個”;“至少有一個”的否定:“一個也沒有”;“是至多有n個”的否定:“至少有n+1個”;“任意的”的否定:“某個”;“任意兩個”的否定:“某兩個”;“所有的”的否定:“某些”.
解答: 解:根據(jù)反證法的步驟,假設是對原命題結論的否定,“在一個三角形的三個內角中,至少有2個銳角”的否定:在一個三角形的三個內角中,至多有1個銳角.
故答案為:至多有1.
點評:本題考查反證法的概念,邏輯用語,否命題與命題的否定的概念,邏輯詞語的否定.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,
tanB
tanC
=
2a-c
c

(Ⅰ)求角B的大小;
(Ⅱ)求函數(shù)f(x)=sinx•cos(x+B)+
3
4
(x∈[0,
π
2
])的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,BC=
2
,AC=1,以AB為邊作等腰直角三角形ABD(B為直角頂點,C、D兩點在直線AB的兩側).當∠C變化時,線段CD長的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三邊長分別為a,b,c,若k<
2c-b
2a
對任意的a,b,c恒成立,則
k2-2k+3
1-k
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex的反函數(shù)是g(x),點M,N分別是函數(shù)f(x),g(x)上的兩個動點,線段MN的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(-x2+6x-9)n的展開式中所有的項的系數(shù)的和為16,則展開式中的常數(shù)項為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某個建筑物的墻面上,有如圖所示的圖案,現(xiàn)按同樣的規(guī)律繼續(xù)發(fā)展,設第n個圖案包含f(n)個小圖形,則f(5)=
 
;f(n)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(3,4),
b
=(2,-1),如果向量
a
-x
b
b
垂直,則x的值為( 。
A、
23
3
B、
3
23
C、
2
5
D、-
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2x-
1
x
n的展開式的各個二項式系數(shù)之和為64,則在(2x-
1
x
n的展開式中,常數(shù)項為(  )
A、-120B、120
C、-60D、60

查看答案和解析>>

同步練習冊答案