14.已知集合A={-1,1,3},B={x|x<3},則A∩B={-1,1}.

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={-1,1,3},B={x|x<3},
∴A∩B={-1,1},
故答案為:{-1,1}

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知平面內(nèi)兩點(diǎn)A(2acos2$\frac{ωx+φ}{2}$,1),B(1,$\sqrt{3}$asin(ωx+φ)-a),(a≠0,ω>0,0<φ<$\frac{π}{2}$),設(shè)函數(shù)f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,若f(x)的圖象相鄰兩最高點(diǎn)的距離為π,且有一個(gè)對(duì)稱中心為($\frac{π}{3}$,0).
(1)求ω和φ的值;   
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若a>0,試討論k為何值時(shí),方程f(x)-k=0(x∈[0,a])有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函數(shù)z=3x-y的最小值是(  )
A.9B.5C.-5D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,函數(shù)y=f(x)是可導(dǎo)函數(shù),曲線y=f(x)過(guò)點(diǎn)(2,3),且在x=2處的切線l在y軸上的截距為2,令g(x)=xf(x),則曲線y=g(x)在x=2處的切線方程是4x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,桌面上擺有三串冰糖葫蘆,第一串3課,第二串2顆,第三串1顆.小明每次從中取走一顆,若上面的冰糖葫蘆取走后才能取下面的冰糖葫蘆.則冰糖葫蘆A恰好在第五次被取走,且冰糖葫蘆B恰好在第六次被取走的取法數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0,y≥0}\\{x+2y≤8}\\{3x+y≤9}\end{array}\right.$,則z=2x+3y的最大值是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow$=(cosx,cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$-1
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{2}$]時(shí),若f(x)=1,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)于函數(shù)y=f(x),當(dāng)x∈(0,+∞)時(shí),總有f(x)<xf′(x),若m>n>0,則下列不等式中,恒成立的是( 。
A.$\frac{f(m)}{n}$<$\frac{f(n)}{m}$B.$\frac{f(m)}{m}$<$\frac{f(n)}{n}$C.$\frac{f(m)}{n}$>$\frac{3f(n)}{m}$D.$\frac{f(m)}{m}$>$\frac{f(n)}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)定義在R上的奇函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,則不等式f(x-1)<0的解集是( 。
A.(-∞,1)B.(1,+∞)C.(0,+∞)D.(-∞,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案