已知橢圓中心在原點,焦點在y軸上,離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點F是橢圓在y軸正半軸上的一個焦點,點A,B是拋物線上的兩個動點,且滿足,過點A,B分別作拋物線的兩條切線,設(shè)兩切線的交點為M,試推斷是否為定值?若是,求出這個定值;若不是,說明理由.
(Ⅰ)(Ⅱ)為定值0.
(Ⅰ)設(shè)橢圓方程為(ab>0).       
因為,得.又,則.
故橢圓的標準方程是.                          (5分)
(Ⅱ)由橢圓方程知,c=1,所以焦點F(0,1),設(shè)點A(x1,y1),B(x2,y2).
,得(-x1,1-y1)=λ(x2y2-1),所以-x1λx2,1-y1λ(y2-1). (7分)
于是.因為,,則y1λ2y2.
聯(lián)立y1λ2y2和1-y1λ(y2-1),得y1λ,y2=.             (8分)
因為拋物線方程為yx2,求導(dǎo)得y′=x.設(shè)過拋物線上的點A、B的切線分別為l1,l2,則
直線l1的方程是yx1(xx1)+y1,即yx1xx12.     (9分)
直線l2的方程是yx2(xx2)+y2,即yx2xx22.        (10分)
聯(lián)立l1l2的方程解得交點M的坐標為.        (11分)
因為x1x2=-λx22=-4λy2=-4.所以點M.             (12分)
于是(x2x1,y2y1).
所以=(x22x12)-2(x22x12)=0.
為定值0.       (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓圓心為A,動圓M過點B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.
(I)求曲線C的方程;
(II)若點為曲線C上一點,求證:直線與曲線C有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖中心在原點,焦點在軸上的橢圓,離心率,且經(jīng)過拋物線的焦點.
(I)求橢圓的標準方程;
(II)若過點B(2,0)的直線L(斜率不等于零)與橢圓交于不同的兩點E、F(E在B、F之間),試求OBE與OBF面積1:2,求直線L的方程。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓上一點P到其左焦點的距離為3,到右焦點的距離為1,則P點到右準線的距離為
A. 6B. 2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1、F2分別為橢圓C =1(ab>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,)到F1F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設(shè)點P是(1)中所得橢圓上的動點,當P在何位置時,最大,說明理由,并求出最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C: 的焦點為F1(0,c)、F2(0,一c)(c>0),拋物線的焦點與F1重合,過F2的直線l與拋物線P相切,切點在第一象限,且與橢圓C相交于A、B兩點,且
(I)求證:切線l的斜率為定值;
(Ⅱ)若拋物線P與直線l及y軸圍成的圖形面積為,求拋物線P的方程;
(III)當時,求橢圓離心率e的取值范圍。


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A.B是橢圓上兩點,O是坐標原點,定點,向量在向量方向上的投影分別是m.n ,且7mn ,動點P滿足
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)設(shè)過點E的直線l與C交于兩個不同的點M.N,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)為直角坐標平面內(nèi)x軸.y軸正方向上的單位向量,若,且
(Ⅰ)求動點M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)曲線C上兩點A.B,滿足(1)直線AB過點(0,3),(2)若,則OAPB為矩形,試求AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓經(jīng)過原點,且焦點F1(1,0),F(xiàn)(3,0),則其離心率為 (  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案