14.在空間中,下列命題正確的是( 。
A.如果平面α⊥平面β,任取直線m?α,那么必有m⊥β
B.如果直線m∥平面α,直線n?α內(nèi),那么m∥n
C.如果直線m∥平面α,直線n∥平面α,那么m∥n
D.如果平面α外的一條直線m垂直于平面α內(nèi)的兩條相交直線,那么m⊥α

分析 A,正方體ABCD-A′B′C′D′,中平面ABCD⊥平面A′ADD′,直線AD′不垂直β;
B,如果直線m∥平面α,直線n?α內(nèi),那么m∥n或異面;
C,如果直線m∥平面α,直線n∥平面α,那么m∥n或異面或相交;
對于D,根據(jù)線面垂直的判定判定.

解答 解:對于A,如圖平面ABCD⊥平面A′ADD′,直線AD′不垂直β,故錯;
對于B,如果直線m∥平面α,直線n?α內(nèi),那么m∥n或異面,故錯;
對于C,如果直線m∥平面α,直線n∥平面α,那么m∥n或異面或相交,故錯;
對于D,根據(jù)線面垂直的判定,如果平面α外的一條直線m垂直于平面α內(nèi)的兩條相交直線,那么m⊥α,正確.
故選:D.

點(diǎn)評 本題考查了空間線線、線面、面面位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是(  )
A.B.$\frac{9π}{2}$C.$\frac{125π}{6}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^{-2}}{,_{\;}}_{\;}x<0\\ lnx{,_{\;}}_{\;}x>0\end{array}\right.$若f(a)=2,則實(shí)數(shù)a=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},
(Ⅰ)求A∩B、(∁UA)∪(∁UB);
(Ⅱ)若{x|2k-1≤x≤2k+1}⊆A,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)$f(x)=\frac{{{e^2}{x^2}+1}}{x},g(x)=\frac{{{e^2}x}}{e^x}$,對任意x1,x2∈(0,+∞),不等式$\frac{{g({x_1})}}{k}≤\frac{{f({x_2})}}{k+1}$恒成立,則正數(shù)k的取值范圍是( 。
A.[1,+∞)B.(1,+∞)C.$[\frac{1}{2e-1},+∞)$D.$(\frac{1}{2e-1},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,則實(shí)數(shù)b的取值范圍是( 。
A.(-5,5$\sqrt{2}$]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-5,5]D.[-5$\sqrt{2}$,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=x2+bx+c(b,c∈R),若對任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,則b的取值范圍是(  )
A.[0,2]B.(0,2]C.(-2,2)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-ax2-3a2x+1(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間、極大值和極小值.
(Ⅱ)若x∈[a+1,a+2]時,恒有f′(x)>-3a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是任意的非零向量,且相互不平行,則下面四個命題:
①$(\overrightarrow a•\overrightarrow b)\overrightarrow c-(\overrightarrow c•\overrightarrow a)\overrightarrow b=\overrightarrow 0$;
②$|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
③$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$不與$\overrightarrow c$垂直;
④$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
其中是真命題的為( 。
A.①③B.②③C.③④D.②④

查看答案和解析>>

同步練習(xí)冊答案