一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的側(cè)面積等于
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖知幾何體為四棱錐,畫(huà)出其直觀圖,根據(jù)三視圖的數(shù)據(jù)即可求出幾何體的側(cè)面積.
解答: 解:由三視圖知幾何體為四棱錐,其直觀圖如圖:
由三視圖可知:PA=3,AB=BC=CD=DA=2,PA⊥正方形ABCD
∴幾何體的側(cè)面積是:S=2S△PAB+2S△PBC=
1
2
×2×3+2×
1
2
×2×
32+22
=6+2
13

故答案為:6+2
13
點(diǎn)評(píng):本題考查了由三視圖求幾何體的側(cè)面積,解題的關(guān)鍵是判斷幾何體的形狀及相關(guān)數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
.且過(guò)點(diǎn)(3,-1).
(1)求橢圓C的方徎;
(2)若動(dòng)點(diǎn)P在直線l:x=-2
2
上,過(guò)P作直線交橢圓C于M,N兩點(diǎn),使得PM=PN,再過(guò)P作直線l′⊥MN,直線l′是否恒過(guò)定點(diǎn),若是,請(qǐng)求出該定點(diǎn)的坐標(biāo);若否,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差不為零,a1+a2+a5>13,且a1,a2,a5成等比數(shù)列,則a1的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<x<
π
4
,則函數(shù)y=
tan3x
tan2x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=xm(1-x)n(m∈N*,n∈N*),下列命題正確的有
 
.(寫(xiě)出所有正確命題的序號(hào))
①f(x)值域?yàn)镽;
②對(duì)任意不全為奇數(shù)的m,n.函數(shù)f(x)的圖象與x軸相切;
③函數(shù)f(x)一定存在極值;
④存在m,n,使f(x)為奇函數(shù);
⑤當(dāng)x?[0,1]時(shí),f(x)≤
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π
2
)的最大值為3,f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對(duì)稱軸間的距離為2,則f(1)+f(2)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于t的一元二次方程t2+(2+i)t+2xy+(x-y)i=0(x,y∈R).當(dāng)方程有實(shí)根時(shí),則t的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正四面體ABCD中,E、F、G分別是BC、CD、DB的中點(diǎn),下面四個(gè)結(jié)論中不正確的是(  )
A、BC∥平面AGF
B、EG⊥平面ABF
C、平面AEF⊥平面BCD
D、平面ABF⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足條件x2+y2≤1的點(diǎn)(x,y)構(gòu)成的平面區(qū)域面積為S1,滿足條件[x]2+[y]2≤1的點(diǎn)(x,y)構(gòu)成的平面區(qū)域的面積為S2,其中[x]、[y]分別表示不大于x,y的最大整數(shù),例如:[-0.4]=-1,[1.6]=1,則S1+S2=(  )
A、π+3B、π+4
C、π+5D、π+6

查看答案和解析>>

同步練習(xí)冊(cè)答案