(12分)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是從A到B的映射.
(1)若B中每一元素都有原象,這樣不同的f有多少個(gè)?
(2)若B中的元素0必?zé)o原象,這樣的f有多少個(gè)?
(3)若f滿足f(a1)+f(a2)+f(a3)+f(a4)=4,這樣的f又有多少個(gè)?
(1)顯然對(duì)應(yīng)是一一對(duì)應(yīng)的,即為a1找象有4種方法,a2找象有3種方法,a3找象有2種方法,a4找象有1種方法,所以不同的f共有4×3×2×1=24(個(gè)).
(2)0必?zé)o原象,1,2,3有無(wú)原象不限,所以為A中每一元素找象時(shí)都有3種方法.所以不同的f共有34=81(個(gè)).
(3)分為如下四類:
第一類,A中每一元素都與1對(duì)應(yīng),有1種方法;
第二類,A中有兩個(gè)元素對(duì)應(yīng)1,一個(gè)元素對(duì)應(yīng)2,另一個(gè)元素與0對(duì)應(yīng),有C·C=12種方法;
第三類,A中有兩個(gè)元素對(duì)應(yīng)2,另兩個(gè)元素對(duì)應(yīng)0,有C·C=6種方法;
第四類,A中有一個(gè)元素對(duì)應(yīng)1,一個(gè)元素對(duì)應(yīng)3,另兩個(gè)元素與0對(duì)應(yīng),有C·C=12種方法.
所以不同的f共有1+12+6+12=31(個(gè)).
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=是R上的奇函數(shù).
(1)求a的值;
(2)求f(x)的反函數(shù)f-1(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.已知函數(shù).
(1)求證:在(0,+∞)上是增函數(shù);
(2)若在(0,+∞)上恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/2/1h4rr3.gif" style="vertical-align:middle;" />。
(1)求函數(shù)的值域;
(2)求函數(shù)的反函數(shù)。(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù),的兩個(gè)極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時(shí),求函數(shù)圖象的對(duì)稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知:函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),為實(shí)數(shù)).
。1)當(dāng)時(shí),求的解析式;
(2)若,試判斷上的單調(diào)性,并證明你的結(jié)論;
。3)是否存在,使得當(dāng)有最大值1?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)求函數(shù)的最大值和最小正周期;
(2)設(shè)A,B,C為三個(gè)內(nèi)角,若,,且C為銳角,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)
討論a,b的取值對(duì)一次函數(shù)y=ax+b單調(diào)性和奇偶性的影響,并畫出草圖。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com