(本小題滿分12分)
已知不等式的解集為,不等式的解集為。
(1)求
(2)若不等式的解集為,求不等式的解集。
(1)A∩B=(-1,2);(2)解集為R.

試題分析:(1)運用一元二次不等式的解集的過程來分別得到集合A,B,然后結(jié)合交集得到結(jié)論。
(2)根據(jù)解集,結(jié)合韋達定理得到系數(shù)a,b的值,進而得到解集。
解:(1)由,所以A=(-1,3)          2分
,所以B=(-3,2),                  4分
∴A∩B=(-1,2)                                               6分
(2)由不等式的解集為(-1,2),
所以,解得                                9分
,解得解集為R.                                  12分
點評:解決該試題的關鍵是對于不等式的解集是不等式成立的充要條件的理解,以及因式分解是解不等式中常用的方法,要熟練掌握。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知是定義在上的奇函數(shù),當時,

(1)求的值;
(2)求的解析式并畫出簡圖;
(3)寫出的單調(diào)區(qū)間(不用證明)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)的圖象頂點為,且圖象在軸上截得線段長為8,則函數(shù)的解析式為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分) 若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關于y軸對稱,
且f(-2)>f(3),設m>-n>0.
(1) 試證明函數(shù)f(x)在(0,+∞)上是減函數(shù);
(2) 試比較f(m)和f(n)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程在區(qū)間上有解,則實數(shù)的取值范圍是        (      )                           
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若
(2)若函數(shù)的圖像上有與軸平行的切線,求的取值范圍。
(3)若函數(shù)
的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù) ,   ,則函數(shù)值的取值范圍是(  )
A.{≤5}B.C.{}D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在閉區(qū)間上有最大值5,最小值1,則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)滿足.
(1)設,求的上的值域;
(2)設,在上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案