19.已知定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),則f(2006)的值為( 。
A.2006B.1003C.0D.不確定

分析 求出函數(shù)的周期,然后化簡所求表達式,利用函數(shù)的奇偶性求解即可.

解答 解:定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),
可得f(x-4)=-f(x-2)=f(x),即f(x+4)=f(x),
可得函數(shù)的周期為4.
f(2006)=f(4×501+2)=f(2),因為f(-2)=-f(2),x=0時,f(0-2)=-f(0)=0,
∴f(2006)=f(2)=-f(-2)=0.
故選:C.

點評 本題考查抽象函數(shù)的應(yīng)用,函數(shù)的周期性以及函數(shù)的奇偶性的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.方程sin(x-2π)=lgx的實根有( 。
A.1個B.2個C.3個D.無窮多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<m的解集為(c,c+2$\sqrt{2}$).
(1)求實數(shù)m的值;
(2)若x>1,y>0,x+y=m,求$\frac{1}{x-1}$+$\frac{2}{y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在平面直角坐標系中,設(shè)點P1(x1,y1)、P2(x2,y2),稱d(P1,P2)=max{|x1-x2|,|y1-y2|}(其中max{a,b}表示a、b中的較大數(shù))為P1、P2兩點的“切比雪夫距離”;
(1)若P(3,1)、Q為直線y=2x-1上的動點,求P,Q兩點的“切比雪夫距離”的最小值;
(2)定點C(x0,y0),動點P(x,y)滿足d(C,P)=r(r>0),請求出P點所在的曲線所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)=$\left\{\begin{array}{l}{x^2}-1(x≤0)\\ 2x(x>0)\end{array}$,若f(x)=8,則x的值為(  )
A.x=3或4B.x=±3或4C.x=-3或4D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某市場經(jīng)營一批進價為300元/件的商品,在市場試銷中發(fā)現(xiàn),此商品的日銷售量y(件)與銷售單價x(元)之間存在一次函數(shù)的關(guān)系,且銷售單價為300元時,銷售量是60件;銷售單價為400元時,銷售量是50件.
(1)求出y與x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)設(shè)經(jīng)營此商品的日銷售利潤為w元,根據(jù)上述關(guān)系,寫出w關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?最大日銷售利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.化簡$\sqrt{{{(π-4)}^2}}+\root{3}{{{{(π-5)}^3}}}$的結(jié)果是(  )
A.2π-9B.9-2πC.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.為了了解某同學的數(shù)學學習情況,對他的6次數(shù)學測試成績(滿分100分)進行統(tǒng)計,作出的莖葉圖如圖所示,則該同學數(shù)學成績的中位數(shù)為84.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列命題中真命題是(  )
A.若$\overrightarrow{a}$與$\overrightarrow$互為負向量,則$\overrightarrow{a}$+$\overrightarrow$=0B.若 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow$
C.若k為實數(shù)且k$\overrightarrow{a}$=$\overrightarrow{0}$,則k=0或$\overrightarrow{a}$=$\overrightarrow{0}$D.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|

查看答案和解析>>

同步練習冊答案