4.某市場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為300元/件的商品,在市場(chǎng)試銷中發(fā)現(xiàn),此商品的日銷售量y(件)與銷售單價(jià)x(元)之間存在一次函數(shù)的關(guān)系,且銷售單價(jià)為300元時(shí),銷售量是60件;銷售單價(jià)為400元時(shí),銷售量是50件.
(1)求出y與x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)為w元,根據(jù)上述關(guān)系,寫出w關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn)?最大日銷售利潤(rùn)是多少?

分析 (1)設(shè)f(x)=kx+b(k,b為常數(shù)),代入點(diǎn)的坐標(biāo),求出y與x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)銷售利潤(rùn)函數(shù)=(售價(jià)-進(jìn)價(jià))×銷量,代入數(shù)值得二次函數(shù),從而可求出最值.

解答 解:(1)設(shè)f(x)=kx+b(k,b為常數(shù)),
則$\left\{\begin{array}{l}{300k+b=60}\\{400k+b=50}\end{array}\right.$,解得:k=-0.1,b=90,
∴f(x)=-0.1x+90,0≤x≤900,y∈N;
(2)日銷售利潤(rùn)為:w=(x-300)•(-0.1x+90)=-0.1x2+120x-27000=-0.1(x-600)2+9000,0≤x≤900;
∴x=600,即當(dāng)銷售單價(jià)為40元時(shí),所獲利潤(rùn)最大,最大日銷售利潤(rùn)是9000元.

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查一次函數(shù)、二次函數(shù),考查二次函數(shù)的最值,正確確定函數(shù)模型是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)P(x,-12)是角θ終邊上一點(diǎn)且$cosθ=-\frac{5}{13}$,則x=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖數(shù)表,為一組等式:某學(xué)生根據(jù)上表猜測(cè)S2n-1=(2n-1)(an2+bn+c),老師回答正確,則a-b+c=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.方程組$\left\{\begin{array}{l}x+y=5\\ x-y=1\end{array}$的解集為(  )
A.(2,3)B.{(3,2)}C.(3,2)D.{(2,3)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),則f(2006)的值為( 。
A.2006B.1003C.0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+bx(a≠0),對(duì)稱軸為x=1,且方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
(1)求f(x)的解析式;
(2)若對(duì)任意的x∈[-2,1],不等式$f(x)≤m-\frac{3}{2}{x^2}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=kx+m,當(dāng)x∈[a1,b1]時(shí),f(x)的值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí),f(x)的值域?yàn)閇a3,b3],依此類推,一般地,當(dāng)x∈[an-1,bn-1]時(shí),f(x)的值域?yàn)閇an,bn],其中k、m為常數(shù),且a1=0,b1=1.
(1)若k=1,求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若m=2,問是否存在常數(shù)k>0,使得數(shù)列{bn}滿足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,請(qǐng)說明理由;
(3)若k<0,設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的首項(xiàng)a1=$\frac{3}{4}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n=1,2,3…
(1)證明:數(shù)列{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列;
(2)是否存在互不相等的正整數(shù)m,s,t成等差數(shù)列,且am-1,as-1,at-1成等比數(shù)列?如果存在,求出所有符合條件的m,s,t,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.關(guān)于x的不等式${log_2}({x^2}-1)>{log_2}(-2x)$的解集為(-∞,-1$-\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案