如圖,△ABC中,BC=6,以BC為直徑的半圓分別交AB、AC于點(diǎn)E、F,若AC=2AE,則EF=
 

考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:證明△AEF∽△ACB,可得
AE
AC
=
EF
BC
,即可得出結(jié)論.
解答: 解:由題意,∵以BC為直徑的半圓分別交AB、AC于點(diǎn)E、F,
∴∠AEF=∠C,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
AE
AC
=
EF
BC
,
∵BC=6,AC=2AE,
∴EF=3.
故答案為:3.
點(diǎn)評:本題考查三角形相似的判定與運(yùn)用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(Ⅰ)求證:CD⊥平面ABD;
(Ⅱ)若AB=BD=CD=1,M為AD中點(diǎn),求三棱錐A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:

(Ⅰ)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)
.
x
和樣本方差s2(同一組中數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)
.
x
,σ2近似為樣本方差s2
(i)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù),利用(i)的結(jié)果,求EX.
附:
150
≈12.2.
若Z-N(μ,σ2)則P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,公差為d,a3>0,當(dāng)且僅當(dāng)n=3時,|an|取到最小值,則d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,P,Q分別是棱AB,A1D1上的點(diǎn),PQ⊥AC,則PQ與BD1所成角的余弦值得取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b、c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),則函數(shù)f(x)=x2+bx+c有零點(diǎn)的概率為( 。
A、
17
36
B、
1
2
C、
19
36
D、
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
x-y+3>0
4x+5y-33<0
x≥0,y≥0
,若x,y為整數(shù),則3x+4y的最大值是(  )
A、26B、25C、23D、22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,曲線C由上半橢圓C1
y2
a2
+
x2
b2
=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點(diǎn)為A,B,其中C1的離心率為
3
2

(Ⅰ)求a,b的值;
(Ⅱ)過點(diǎn)B的直線l與C1,C2分別交于點(diǎn)P,Q(均異于點(diǎn)A,B),若AP⊥AQ,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案