設(shè)b、c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),則函數(shù)f(x)=x2+bx+c有零點(diǎn)的概率為( 。
A、
17
36
B、
1
2
C、
19
36
D、
5
9
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:所有的(b,c)共計(jì)6×6=36個(gè),函數(shù)f(x)=x2+bx+c有零點(diǎn)等價(jià)于b2-4c≥0,用列舉法求得滿足條件的(b,c)有19個(gè),從而得到函數(shù)f(x)=x2+bx+c有零點(diǎn)的概率.
解答: 解:所有的(b,c)共計(jì)6×6=36個(gè),函數(shù)f(x)=x2+bx+c有零點(diǎn)等價(jià)于b2-4c≥0,
故滿足條件的(b,c)有:(2,1)、(3,1)、(3,2)、(4,1)、(4,2)、
(4,3)、(4,4)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、
(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),共計(jì)19個(gè),
故函數(shù)f(x)=x2+bx+c有零點(diǎn)的概率為
19
36
,
故選:C.
點(diǎn)評(píng):本題考主要查古典概型問(wèn)題,可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,列舉法,是解決古典概型問(wèn)題的一種重要的解題方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2+ax+1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a<0時(shí),試討論是否存在x0∈(0,
1
2
)∪(
1
2
,1),使得f(x0)=f(
1
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,∠ABC=90°,若BD⊥AC且BD交AC于點(diǎn)D,丨
BD
丨=
3
,則
BD
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,BC=6,以BC為直徑的半圓分別交AB、AC于點(diǎn)E、F,若AC=2AE,則EF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log2x,x>0
-2x,x≤0
,則關(guān)于x的方程f[f(x)]=-1的兩個(gè)解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點(diǎn),BC=CA=CC1,則BM與AN所成角的余弦值為( 。
A、
1
10
B、
2
5
C、
30
10
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)集P={(x,y)|x,y∈{1,2,3}},從集合P中任取一點(diǎn),縱橫坐標(biāo)和為偶數(shù)的概率是(  )
A、
1
2
B、
1
3
C、
4
9
D、
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的側(cè)視圖、俯視圖如圖所示,則該三棱錐的體積為( 。
(錐體體積公式:V=
1
3
Sh,其中S為底面面積,h為高)
A、3
B、2
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=-2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1,l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案