分析 充分利用已知的x+y=-1,將所求轉(zhuǎn)化為積為定值的形式.
解答 解:因為實數(shù)x,y滿足x•y>0,且x+y=-1,則$\frac{1}{x}+\frac{4}{y}$=$\frac{-x-y}{x}-\frac{4(x+y)}{y}$=-5-($\frac{y}{x}+\frac{4x}{y}$)≤-5-4=-9;
當(dāng)且僅當(dāng)$\frac{y}{x}=\frac{4x}{y}$時等號成立,即x=$-\frac{1}{3}$,y=$-\frac{2}{3}$.
故答案為:-9.
點評 本題考查了利用基本不等式求代數(shù)式的最值;注意基本不等式的三個條件.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>11 | B. | i≥11 | C. | i≤11 | D. | i<11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S△AOC的最小值為$\frac{1}{2}$S | B. | SAOB的最小值為($\sqrt{2}$-1)S | ||
C. | S△AOC+S△AOB的最大值為$\frac{1}{2}$S | D. | S△BOC的最大值為($\sqrt{2}$-1)S |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com