18.已知關(guān)于x的不等式|x-1|+|x-2|≥m對x∈R恒成立.
(Ⅰ)求實(shí)數(shù)m的最大值;
(Ⅱ)若a,b,c為正實(shí)數(shù),k為實(shí)數(shù)m的最大值,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=k$,求證:a+2b+3c≥9.

分析 (Ⅰ)根據(jù)不等式的性質(zhì)求出即可;(Ⅱ)先求出$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=1$,根據(jù)“1”的應(yīng)用結(jié)合基本不等式的性質(zhì)證明即可.

解答 解:(Ⅰ)由|x-1|+|x-2|≥|(x-1)-(x-2)|=1…(3分)
∵|x-1|+|x-2|≥m對x∈R恒成立.m≤1,
∴m最大值為1…(5分)
(Ⅱ)由(Ⅰ)知k=1,
即$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=1$,
$\begin{array}{l}a+2b+3c=(a+2b+3c)(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c})\\=3+\frac{a}{2b}+\frac{a}{3c}+\frac{2b}{a}+\frac{2b}{3c}+\frac{3c}{a}+\frac{3c}{2b}≥3+2\sqrt{\frac{a}{2b}•\frac{2b}{a}}+2\sqrt{\frac{a}{3c}•\frac{3c}{a}}+2\sqrt{\frac{2b}{3c}•\frac{3c}{2b}}=9\end{array}$,
當(dāng)且公當(dāng)a=2b=3c時等號成立 …(9分)
∴a+2b+3c≥9…(10分)

點(diǎn)評 本題考查了不等式的性質(zhì),考查“1”的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓(x-1)2+(y+2)2=2的圓心到直線x-y=1的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,}&{x≤2}\\{{{log}_2}x-1,}&{x>2}\end{array}}\right.$,則f(f(4))=1,函數(shù)f(x)的單調(diào)遞減區(qū)間是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果函數(shù)y=logax在區(qū)間[2,+∞)上恒有y>1,那么實(shí)數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y∈R,則x2(x-y)>0是x>y的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.拋擲甲,乙兩枚質(zhì)地均勻且四面上分別標(biāo)有1,2,3,4的正四面體,其底面落于桌面,記所得數(shù)字分別為x,y.設(shè)ξ為隨機(jī)變量,若$\frac{x}{y}$為整數(shù),則ξ=0;若$\frac{x}{y}$為小于1的分?jǐn)?shù),則ξ=-1;若$\frac{x}{y}$為大于1的分?jǐn)?shù),則ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知α,β為不重合的兩個平面,直線m?α,那么“m⊥β”是“α⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=1,an+2+ancosnπ=1,記Sn是數(shù)列{an}的前n項(xiàng)和,則$\frac{{S}_{120}}{{a}_{61}}$等于( 。
A.930B.1520C.60D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足x•y>0,且x+y=-1,則$\frac{1}{x}+\frac{4}{y}$的最大值為-9.

查看答案和解析>>

同步練習(xí)冊答案