17.已知四邊形ABCD滿足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是BC的中點(diǎn),將△BAE沿著AE翻折成△B1AE,使面B1AE⊥面AECD,F(xiàn),G分別為B1D,AE的中點(diǎn).

(Ⅰ)求三棱錐E-ACB1的體積;
(Ⅱ)證明:B1E∥平面ACF;
(Ⅲ)證明:平面B1GD⊥平面B1DC.

分析 (Ⅰ)由題意知,AD∥EC且AD=EC,所以四邊形ADCE為平行四邊形,得到AE=DC,得到∠AEC=120°,首先求出△AEC的面積,進(jìn)一步求出高B1G,利用體積公式可求;
(Ⅱ)連接ED交AC于O,連接OF,利用AEDC為菱形,且F為B1D的中點(diǎn)得到FO∥B1E,利用線面平行的判定定理可證;
(Ⅲ)證明:連結(jié)GD,則DG⊥AE,又B1G⊥AE,B1G∩GD=G,判斷AE⊥平面B1GD,利用面面垂直的判定定理可證.

解答 解:(Ⅰ)由題意知,AD∥EC且AD=EC,所以四邊形ADCE為平行四邊形,
∴AE=DC=a,
∴△ABE為等邊三角形,
∴∠AEC=120°,
∴${S_{△AEC}}=\frac{1}{2}{a^2}sin120°=\frac{{\sqrt{3}}}{4}{a^2}$…(1分)
連結(jié)B1G,則B1G⊥AE,又平面B1AE⊥平面AECD交線AE,
∴B1G⊥平面AECD且${B_1}G=\frac{{\sqrt{3}}}{2}a$…(2分)
∴${V_{E-AC{B_1}}}={V_{{B_1}-AEC}}=\frac{1}{3}{B_1}G•{S_{△AEC}}=\frac{1}{3}×\frac{{\sqrt{3}}}{2}a×\frac{{\sqrt{3}}}{4}{a^2}=\frac{a^3}{8}$…(4分)
(Ⅱ)證明:連接ED交AC于O,連接OF,
∵AEDC為菱形,且F為B1D的中點(diǎn),
∴FO∥B1E,…(6分)
又B1E?面ACF,F(xiàn)O?平面ACF,
∴B1E∥平面ACF   …(8分)
(Ⅲ)證明:連結(jié)GD,則DG⊥AE,又B1G⊥AE,B1G∩GD=G,
∴AE⊥平面B1GD.…(10分)
又AE∥DC,∴DC⊥平面B1GD,又DC?平面B1DC
∴平面B1GD⊥平面B1DC.…(12分)

點(diǎn)評 本題考查了三棱錐的體積公式的運(yùn)用以及線面平行、面面垂直的判定定理的運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(理)已知圓心為O,半徑為1的圓上有不同的三個點(diǎn)A、B、C,其中$\overrightarrow{OA}•\overrightarrow{OB}=0$,存在實(shí)數(shù)λ,μ滿足$\overrightarrow{OC}+λ\overrightarrow{OA}+u\overrightarrow{OB}=\overrightarrow 0$,則實(shí)數(shù)λ,μ的關(guān)系為(  )
A.λ22=1B.$\frac{1}{λ}+\frac{1}{μ}=1$C.λμ=1D.λ+μ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ+μ的值為( 。
A.$\frac{8}{9}$B.$\frac{4}{9}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知在△ABC中,BC=5,G、O分別是△ABC的重心和外心,且$\overrightarrow{OG}$•$\overrightarrow{BC}$=5,則△ABC的形狀是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=x3-3x2+6在x=2時取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為$\frac{1}{3}$,乙獲勝的概率為$\frac{2}{3}$,各局比賽結(jié)果相互獨(dú)立.
(1)求乙在4局以內(nèi)(含4局)贏得比賽的概率;
(2)若每局比賽勝利方得1分,對方得0分,求甲最終總得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC的三個頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,則下列說法中正確的是( 。
A.P在△ABC的內(nèi)部B.P在△ABC的邊AB上
C.P在AB邊所在的直線上D.P在△ABC的外部

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計算:$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosα}}$,(270°<α<360°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公園引進(jìn)了兩種植物品種甲與乙,株數(shù)分別為12和8,這20株植物的株高數(shù)據(jù)如下(單位:cm):
甲:162  168  171  175  166  176  178  173 191 194 187 171
乙:155  156  162  158  159  177  168  178
若這兩種植物株高在175cm以上(包括175cm)定義為“優(yōu)良品種”,株高在175cm以下(不包括175cm)定義為“非優(yōu)良品種'.
(Ⅰ)畫出這兩組數(shù)據(jù)的莖葉圖;
(Ⅱ)求甲品種的中位數(shù)和平均數(shù);
(Ⅲ)在以上20株植物中,如果用分層抽樣的方法從”優(yōu)良品種“和”非優(yōu)良品種“中抽取5株,再從這5株中選2株,那么至少有一株是”優(yōu)良品種“的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案