【題目】已知函數(shù),.
(1)當時,求曲線在點處的切線方程;
(2)令,討論的單調(diào)性.
(3)當時,恒成立,求實數(shù)的取值范圍.( 為自然對數(shù)的底數(shù), …).
【答案】(1)(2)詳見解析(3)
【解析】
(1)當時,先對函數(shù)求導(dǎo),求得斜率,結(jié)合切點坐標,利用點斜式得到切線方程.(2)求出的表達式,對求得,然后將分成四類,討論函數(shù)的單調(diào)區(qū)間.(3)將表達式代入原不等式并化簡,構(gòu)造函數(shù)設(shè)利用導(dǎo)數(shù)求得函數(shù)的最小值,令這個最小值大于零,求得的取值范圍.
解:(1),,,
所以曲線在點處的切線方程為.
(2),定義域為,
,
①當時,當時,,在單調(diào)遞增;當時,,在單調(diào)遞減;
②當時,當或時,,在,上單調(diào)遞增;當時,,在單調(diào)遞減;
③當時,在單調(diào)遞增;
④當時,當或時,,在,上單調(diào)遞增;當時,,在單調(diào)遞減.
綜上,當時,在單調(diào)遞增,在單調(diào)遞減;當時,在,上單調(diào)遞增,在單調(diào)遞減;當時,在單調(diào)遞增;當時,在,上單調(diào)遞增,在單調(diào)遞減.
(3)當時,,即恒成立,
設(shè),,
顯然在上單調(diào)遞增,且,所以當時,;當時,.即在上單調(diào)遞減,在上單調(diào)遞增. ,所以,
所以的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形中,,,是的中點.,、分別是、上的動點,且,設(shè)(),沿將梯形翻折,使平面平面,如圖.
(1)當時,求證:;
(2)若以、、、為頂點的三棱錐的體積記為,求的最大值;
(3)當取得最大值時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:
(1)試估計這款保險產(chǎn)品的收益率的平均值;
(2)設(shè)每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組與的對應(yīng)數(shù)據(jù):
元 | 25 | 30 | 38 | 45 | 52 |
銷量為(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與有較強的線性相關(guān)關(guān)系,且據(jù)此計算出的回歸方程為.
(。┣髤(shù)的值;
(ⅱ)若把回歸方程當作與的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費收入每份保單的保費銷量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣位于沙漠地帶,人與自然長期進行頑強的斗爭,到1998年底全縣的綠化率已達到30%。從1999年開始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時,由于各種原因,原有綠化面積的4%又被沙化。
(1)設(shè)全縣面積為1,1998年底綠化總面積為,經(jīng)過n年后綠化總面積為,求證:。
(2)至少需要多少年的努力,才能使全縣的綠化率超過60%?(年取整數(shù),lg2=0.3010)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機抽取40人進行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.
(1)將答題卡上的列聯(lián)表補充完整;
(2)判斷是否有的把握認為對這種口罩的了解與否與年齡有關(guān).
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: 的一個頂點與拋物線: 的焦點重合,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點的直線l與橢圓C交于M、N兩點.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知以點為圓心的及其上一點.
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的標準方程;
(2)設(shè)平行于的直線與圓相交于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在意大利,有一座滿是“斗笠”的灰白小鎮(zhèn)阿爾貝羅貝洛(Alberobello),這些圓錐形屋頂?shù)钠嫣匦∥菝?/span>Trullo,于1996年被收入世界文化遺產(chǎn)名錄(如圖1).現(xiàn)測量一個屋頂,得到圓錐SO的底面直徑AB長為12m,母線SA長為18m(如圖2).C,D是母線SA的兩個三等分點(點D靠近點A),E是母線SB的中點.
(1)從點A到點C繞屋頂側(cè)面一周安裝燈光帶,求燈光帶的最小長度;
(2)現(xiàn)對屋頂進行加固,在底面直徑AB上某一點P,向點D和點E分別引直線型鋼管PD和PE.試確定點P的位置,使得鋼管總長度最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S—ABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3
(1)求直線AS與平面ABCD所成角的正弦值;
(2)若線段CD上能找到點E,滿足AE⊥SE,則λ可能的取值有幾種情況?請說明理由;
(3)在(2)的條件下,當λ為所有可能情況的最大值時,線段CD上滿足AE⊥SE的點有兩個,分別記為E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com