一平面截球O得到半徑為
5
cm的圓面,球心到這個平面的距離是2cm,則球O的體積是(  )
A、12πcm3
B、36πcm3
C、64
6
πcm3
D、108πcm3
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:根據(jù)條件求出截面圓的半徑,根據(jù)直角三角形建立條件根據(jù)即可求出球的半徑.
解答: 解:作出對應(yīng)的截面圖,
∵截面圓的半徑為
5
,即BC=
5
,
∵球心O到平面α的距離為2,
∴OC=2,
設(shè)球的半徑為R,
在直角三角形OCB中,OB2=OC2+BC2=4+(
5
2=9.
即R2=9,
解得R=3,
∴該球的體積為
4
3
πR3=
4
3
×π×33=36π,
故選:B.
點評:本題主要考查球的體積的計算,根據(jù)條件求出球半徑是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①隨機事件A的概率是頻率的穩(wěn)定值,頻率是概率的近似值;
②一次試驗中不同的基本事件不可能同時發(fā)生;
③任意事件A發(fā)生的概率P(A)總滿足0<P(A)<1;
其中正確的是
 
;(寫出所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-alnx-1(a∈R)在[1,2]內(nèi)不存在極值點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位職工共有600人,其中青年職工250人,中年職工200人,老年職工150人,現(xiàn)采取分層抽樣法抽取樣本,樣本中青年職工5人,則樣本容量是( 。
A、12B、15C、18D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M(cos
π
3
x+cos
π
4
x,sin
π
3
x+sin
π
4
x)(x∈R)為坐標(biāo)平面上一點,記f(x)=|
OM
|2
-2,且f(x)的圖象與射線y=0(x≥0)交點的橫坐標(biāo)由小到大依次組成數(shù)列{an},則|an+3-an|等于( 。
A、12B、24C、36D、484

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=2sin(2x+
π
4
)的圖象向右平移φ(φ>0)個單位,再將圖象上每一點的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),所得圖象關(guān)于直線x=
π
4
對稱,則φ的最小值為( 。
A、
3
4
π
B、
1
2
π
C、
3
8
π
D、
1
8
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}:-
3
、3、-3
3
、9、…的一個通項公式是(  )
A、an=(-1)n
3n
(n∈N*
B、an=(-1)n
3n
(n∈N*
C、an=(-1)n+1
3n
(n∈N*
D、an=(-1)n+1
3n
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)輸入的x值為7時,右邊的程序運行的結(jié)果等于( 。
A、6B、-6C、8D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3,則下列說話正確的是( 。
A、f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù)
B、f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù)
C、f(x)為偶函數(shù),且在(0,+∞)上是增函數(shù)
D、f(x)為偶函數(shù),且在(0,+∞)上是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案