17.已知角θ∈(0,2π),關(guān)于x的方程2x2-($\sqrt{3}$-1)x+m=0的兩根為sinθ,cosθ.
(1)求m的值;
(2)求方程的兩根及此時θ的值.

分析 (1)由sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=$\frac{m}{2}$以及同角三角函數(shù)的基本關(guān)系可得 1+m=$\frac{2-\sqrt{3}}{2}$,由此解得m的值.
(2)由以上可得,sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=-$\frac{\sqrt{3}}{4}$,即可解得sinθ 和cosθ 的值,從而求得故此時方程的兩個根及θ的值.

解答 解:(1)由sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=$\frac{m}{2}$,
∴sin2θ+2sinθcosθ+cos2θ=($\frac{\sqrt{3}-1}{2}$)2,即 1+m=$\frac{2-\sqrt{3}}{2}$,
解得 m=-$\frac{\sqrt{3}}{2}$.
(2)由以上可得,sinθ+cosθ=$\frac{\sqrt{3}-1}{2}$、sinθcosθ=-$\frac{\sqrt{3}}{4}$,
解得 sinθ=-$\frac{1}{2}$,cosθ=$\frac{\sqrt{3}}{2}$; 或者 sinθ=$\frac{\sqrt{3}}{2}$,cosθ=-$\frac{1}{2}$.
∵θ∈(0,2π),
∴θ=$\frac{11π}{6}$或$\frac{2π}{3}$.

點(diǎn)評 本題主要考查一元二次方程根與系數(shù)的關(guān)系,同角三角函數(shù)的基本關(guān)系的應(yīng)用,三角函數(shù)的恒等變換,根據(jù)三角函數(shù)的值求角,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)分別為F1、F2,若雙曲線上一點(diǎn)P滿足|PF1|•|PF2|=55,求點(diǎn)P到焦點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在極坐標(biāo)系中,點(diǎn)(1,0)和點(diǎn)(1,$\frac{π}{2}$)的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.二次函數(shù)y=kx2(x>0)的圖象在點(diǎn)(an,an2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為an+1,n為正整數(shù),a1=$\frac{1}{3}$,若數(shù)列{an}的前n項(xiàng)和為Sn,則S5=$\frac{31}{48}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.記集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y-4≤0,(x,y)∈A}表示的平面區(qū)域分別為Ω1,Ω2.若在區(qū)域Ω1內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在區(qū)域Ω2中的概率為$\frac{3π+2}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB,點(diǎn)E是棱PB的中點(diǎn).求證:AE⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,四棱錐P-ABCD的底面為等腰梯形,AB∥DC,AB=2AD=2,PA⊥平面ABCD,∠ABC=60°
(1)求AC的長;
(2)證明:BC⊥PC;
(3)若PA=AB,求PC與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}是等差數(shù)列,{bn}是正項(xiàng)等比數(shù)列,且a5=b6,則一定有( 。
A.a3+a7≤b4+b8B.a3+a7<b4+b8C.a3+a7>b4+b8D.a3+a7≥b4+b8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計(jì)算:${(0.027)^{-\frac{1}{3}}}-{log_3}2•{log_8}3$=3.

查看答案和解析>>

同步練習(xí)冊答案