分析 (1)利用三角恒等變換化簡函數(shù)f(x),根據(jù)三角函數(shù)的單調(diào)性求出它的單調(diào)遞增區(qū)間;
(2)根據(jù)方程f(A)+sin(2A-$\frac{π}{6}$)=$\frac{1}{2}$,求出A的值,再根據(jù)△ABC的面積以及余弦定理求出a的值.
解答 解:(1)由題意得f(x)=sin2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$
=$\frac{1-cos2x}{2}$-$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$
=-sin(2x+$\frac{π}{6}$),
由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
解得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z;…(3分)
因為x∈[0,$\frac{3π}{2}$],所以取$\frac{π}{6}$≤x≤$\frac{2π}{3}$或$\frac{7π}{6}$≤x≤$\frac{3π}{2}$,
所以函數(shù)f(x)在[0,$\frac{3π}{2}$]上的單調(diào)遞增區(qū)間為
[$\frac{π}{6}$,$\frac{2π}{3}$],[$\frac{7π}{6}$,$\frac{3π}{2}$]; …(5分)
(2)由f(A)+sin(2A-$\frac{π}{6}$)=$\frac{1}{2}$,
得-sin(2A+$\frac{π}{6}$)+sin(2A-$\frac{π}{6}$)=$\frac{1}{2}$;
化簡得cos2A=-$\frac{1}{2}$;…(6分)
又0<A<$\frac{π}{2}$,所以A=$\frac{π}{3}$;
由題意知,S△ABC=$\frac{1}{2}$bcsinA=2$\sqrt{3}$,
解得bc=8;…(8分)
又b+c=7,所以a2=b2+c2-2bccosA
=(b+c)2-2bc(1+cosA)
=49-2×8×(1+$\frac{1}{2}$)
=25;
故所求a的值為5.…(10分)
點評 本題考查了三角函數(shù)的恒等變換以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了正弦、余弦定理的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com