16.一個算法的程序框圖如圖,則輸出結(jié)果是13

分析 由已知中的程序語句可知:該程序的功能是利用順序結(jié)構(gòu)計算并輸出變量b的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:執(zhí)行x=2后,x=2; 
執(zhí)行y=2x+1后,x=2,y=5; 
執(zhí)行b=3y-2后,x=2,y=5,b=13; 
故輸出的b值為13,
故答案為:13

點評 題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓的方程為x2+y2=4,過點M(2,4)作圓的兩條切線,切點分別為S,T,直線ST恰好經(jīng)過橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點和上頂點.
(1)求橢圓C的方程;
(2)設(shè)橢圓C與x軸交于S,Q點,已知點P滿足$\overrightarrow{PS}•\overrightarrow{PQ}$=0,點A,B在橢圓C上且$\overrightarrow{OA}•\overrightarrow{OB}$=0(O為坐標(biāo)原點),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=sin2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$.
(1)求函數(shù)f(x)在[0,$\frac{3π}{2}$]上的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,若$f(A)+sin(2A-\frac{π}{6})=\frac{1}{2}$,b+c=7,△ABC的面積為$2\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A(1,2),$\overrightarrow{AC}$=(2,-1),則點C的坐標(biāo)為(3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知四棱錐P-ABCD,底面ABCD為邊長為2對的菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點.
(1)判定AE與PD是否垂直,并說明理由;
(2)若PA=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在體積為2的三棱錐A-BCD側(cè)棱AB、AC、AD上分別取點E、F、G,使AE:EB=AF:FC=AG:GD=2:1,記O為三平面BCG、CDE、DBF的交點,則三棱錐O-BCD的體積等于(  )
A.$\frac{1}{9}$B.$\frac{1}{8}$C.$\frac{1}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖及相關(guān)尺寸如圖所示,其中其主視圖和側(cè)視圖是一等腰梯形與一個矩形組成的圖形,俯視圖是兩個同心圓組成的圖形,則該幾何體的體積為(  )
A.25πB.19πC.11πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點A(4,8)關(guān)于直線l1:x+y=4的對稱點B在拋物線C:y2=2px(p>0)的準線上.
(1)求拋物線C的方程;
(2)直線l2與x軸交于點D,與拋物線C交于E、F兩點. 是否存在定點D,使得$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$為定值?若存在,請指出點D的坐標(biāo),并求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α:$a≤x≤a+\frac{1}{2}$,β:1-2a<x<3a+2,若α是β的充分不必要條件,則實數(shù)a的取值范圍是($\frac{1}{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案