20.下列各對向量中,共線的是( 。
A.$\overrightarrow{a}$=(2,3),$\overrightarrow$=(3,-2)B.$\overrightarrow{a}$=(2,3),$\overrightarrow$=(4,-6)C.$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,3)D.$\overrightarrow{a}$=(4,7),$\overrightarrow$=(7,4)

分析 根據(jù)兩向量共線滿足x1y2-x2y1=0,對題目中的選項進行分析判斷即可.

解答 解:根據(jù)兩向量共線時,應(yīng)滿足x1y2-x2y1=0;
A中,2×(-2)-3×3=-13≠0,不滿足條件;
B中,2×(-6)-3×4=-24≠0,不滿足條件;
C中,1×3-$\sqrt{3}$×$\sqrt{3}$=0,滿足條件;
D中,4×4-7×7=-33≠0,不滿足條件.
故選:C.

點評 本題考查了利用坐標(biāo)表示判斷平面向量是否共線的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在[-2,2]上的函數(shù)y=f(x)和y=g(x),其圖象如圖所示:

則以下結(jié)論正確的個數(shù)是結(jié)論( 。
①方程f[g(x)]=0有且僅有6個根;   ②方程g[f(x)]=0有且僅有3個根;
③方程f[f(x)]=0有且僅有5個根;   ④方程g[g(x)]=0有且僅有4個根.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知M(-1,2)為橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1內(nèi)一點,直線l過點M,交橢圓于A,B兩點,且M為弦AB的中點,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解不等式:x2-x+a-a2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線y=$\sqrt{3}$(x-2)與拋物線C:y2=8x相交于A,B兩點,點F為C的焦點,若$\overrightarrow{AF}$=$λ\overrightarrow{FB}$(|$\overrightarrow{AF}$|>|$\overrightarrow{FB}$|)則λ=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=1,求$\overrightarrow{C{A}_{1}}$與$\overrightarrow{B{C}_{1}}$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-3,4),則3$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo)是(9,-14).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求過M(4,2)且與圓x2+y2-8x+6y=0相切的直線方程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線3x+2y-2m-1=0與直線2x+4y-m=0的交點在第四象限,則實數(shù)m的取值范圍是.
A.(-∞,-2)B.(-2,+∞)C.(-∞,-$\frac{2}{3}$)D.(-$\frac{2}{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案