【題目】對于下列四個命題:

p1:x0(0,+∞),;

p2:x0(0,1),lox0>lox0;

p3:x(0,+∞),<lox;

p4:x<lox.

其中的真命題是(  )

A. p1,p3 B. p1,p4

C. p2,p3 D. p2,p4

【答案】D

【解析】對于命題p1,可知當(dāng)x>0>1,

x(0,+∞),p1是假命題;

對于命題p2,當(dāng)0<a<1,可知y=logax(0,+∞)上是減函數(shù)

x(0,1),0<logx<logx,lox>lox.

x0(0,1),lox0>lox0所以p2是真命題;

對于命題p3,當(dāng)x=1,,lox=lo1=0,此時>lox.p3是假命題;

對于命題p4,因?yàn)?/span>y1=內(nèi)是減函數(shù),所以=1.

y2=lox內(nèi)是減函數(shù)所以lox>lo=1.

x,lox>,p4是真命題

綜上可得p2,p4是真命題D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是平行四邊形,,, ,,分別是,的中點(diǎn).

)證明:平面平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖3,是一個直角梯形,,邊上一點(diǎn),相交于,,.將△沿折起,使平面⊥平面,連接、,得到如圖4所示的四棱錐

(Ⅰ)求證:⊥平面;

(Ⅱ)求直線與面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的發(fā)展,終身學(xué)習(xí)成為必要,工人知識要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的;

(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時間長短有關(guān).能力與培訓(xùn)時間列聯(lián)表

短期培訓(xùn)

長期培訓(xùn)

合計

能力優(yōu)秀

能力不優(yōu)秀

合計

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,且為常數(shù)).

(1)若對于任意的,都有成立,求的取值范圍;

(2)在(1)的條件下,若方程上有且只有一個實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行六面體中,平面,且 ,

(1)求異面直線所成角的余弦值;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20175月,來自一帶一路沿線的20國青年評選出了中國的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購。為拓展市場,某調(diào)研組對甲、乙兩個品牌的共享單車在5個城市的用戶人數(shù)進(jìn)行統(tǒng)計,得到如下數(shù)據(jù):

城市

品牌

甲品牌(百萬)

4

3

8

6

12

乙品牌(百萬)

5

7

9

4

3

Ⅰ)如果共享單車用戶人數(shù)超過5百萬的城市稱為優(yōu)質(zhì)潛力城市,否則非優(yōu),請據(jù)此判斷是否有85%的把握認(rèn)為優(yōu)質(zhì)潛力城市與共享單車品牌有關(guān)?

Ⅱ)如果不考慮其它因素,為拓展市場,甲品牌要從這5個城市中選出3個城市進(jìn)行大規(guī)模宣傳.

①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;

②以表示選中的城市中用戶人數(shù)超過5百萬的個數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: K2=,n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為自然對數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線與直線垂直.

(1)求實(shí)數(shù)值;

(2)若不等式對任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),且數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

同步練習(xí)冊答案