5.在銳角三角形ABC中,若sinA=$\frac{\sqrt{2}}{2}$,sinB=$\frac{\sqrt{3}}{2}$,則C=( 。
A.30°B.45°C.60°D.75°

分析 由已知求出角A,B的大小,再由三角形內(nèi)角和定理得答案.

解答 解:∵三角形ABC為銳角三角形,且sinA=$\frac{\sqrt{2}}{2}$,sinB=$\frac{\sqrt{3}}{2}$,
∴A=45°,B=60°,
則由三角形內(nèi)角和定理可得:C=180°-45°-60°=75°.
故選:D.

點評 本題考查由三角函數(shù)的值求角,考查了三角形內(nèi)角和定理的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.當x∈(1,+∞)時,對數(shù)函數(shù)f(x)=(a-1)logax( 。
A.單調(diào)遞增B.單調(diào)遞減
C.部分遞增部分遞減D.既不遞增也不遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.過定點P(1,0)作直線l,使l與曲線y2=4x相交于A,B兩點,且|AB|=5,則這樣的直線l有2條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=lg(ax2-4a+1),0<a<$\frac{1}{4}$,則關于x的不等式(x-1)f(x)<0的解集為(  )
A.(-∞,-2)∪(1,2)B.(-2,-1)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若實數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+5≤0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$且z=2x+4y的最小值為-14,則常數(shù)k的值為(  )
A.10B.$\frac{19}{3}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{2x}{1+{x}^{2}}$,關于x的方程(f(x))2+af(x)+b=0(a,b∈R)有如下幾個判斷:
(1)存在實數(shù)a,b,使此方程無實數(shù)解;
(2)存在實數(shù)a,b,使此方程有2個不同的實數(shù)解;
(3)存在實數(shù)a,b,使此方程有4個不同的實數(shù)解;
(4)存在實數(shù)a,b,使此方程有6個不同的實數(shù)解;
其中正確的判斷個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象平移φ個單位后函數(shù)圖象關于y軸對稱,則|φ|的最小值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在一張紙上畫一個圓,圓心為O,半徑為R,并在圓O外設置一個定點F,折疊紙片使圓周上某一點M與F重合,抹平紙片得一折痕AB,連結(jié)MO并延長交AB于點P,當點M在圓O上運動時,直線AB與P點軌跡的公共點的個數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,-3),$\overrightarrow{c}$=(3,0),且$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,求x,y.

查看答案和解析>>

同步練習冊答案