已知直線PQ的斜率為-2,則此直線繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°所得直線的斜率為
 
考點(diǎn):兩直線的夾角與到角問題
專題:直線與圓
分析:設(shè)所得直線的斜率為k,則由題意可得tan60°=
-2-k
1+(-2)k
,由此解得k的值.
解答: 解:設(shè)所得直線的斜率為k,則由題意可得tan60°=
-2-k
1+(-2)k
=
3
,
解得 k=
2+
3
2
3
-1
=
8+5
3
11
,
故答案為:
8+5
3
11
點(diǎn)評(píng):本題主要考查一條直線到另一條直線的角的計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
1
ax2-2ax+a+1
的定義域?yàn)閷?shí)數(shù)集
R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(-1,1)
 
{y|y=x2}.(填“∈”或“∉”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,O是其外接圓的圓心,其兩邊中線的交點(diǎn)是G,兩條高線的交點(diǎn)是H,給出下列結(jié)論或命題:
(1)動(dòng)點(diǎn)P滿足
AP
=λ(
AB
|
AB
|
+
AC
|
AC
|
)(λ≠0),則動(dòng)點(diǎn)P的軌跡一定過點(diǎn)H;
(2)動(dòng)點(diǎn)P在△ABC所在平面內(nèi),則點(diǎn)G與P重合時(shí),使PA2+PB2+PC2的值最。
(3)動(dòng)點(diǎn)P滿足
AP
=λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)(λ≠0),則點(diǎn)P的軌跡一定過點(diǎn)O;
(4)GH=2OG.
其中正確結(jié)論或命題的序號(hào)是
 
.(填上所有正確結(jié)論或命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A(1,2)關(guān)于點(diǎn)P(3,4)對(duì)稱的點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=-4,則cos2α-sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的主視圖和俯視圖如圖所示,主視圖是邊長(zhǎng)為2a的正三角形,俯視圖是邊長(zhǎng)為a的正六邊形,則該幾何體左視圖的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校選修羽毛球課程的學(xué)生中,高一,高二年級(jí)分別有80名,50名.現(xiàn)用分層抽樣的方法在這130名學(xué)生中抽取一個(gè)樣本,已知在高一年級(jí)學(xué)生中抽取了24名,則在高二年級(jí)學(xué)生中應(yīng)抽取的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=sin2x+
3
cos2x關(guān)于點(diǎn)(x0,0)成中心對(duì)稱,若x0∈[0,
π
2
],則x0=( 。
A、
π
12
B、
π
6
C、
π
3
D、
12

查看答案和解析>>

同步練習(xí)冊(cè)答案