A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由已知及余弦定理可得cosC=$\frac{\sqrt{3}}{2}$,由C為三角形內(nèi)角C∈(0,π),即可解得C的值.
解答 解:∵a2+b2-c2=$\sqrt{3}$ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{3}ab}{2ab}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0,π),
∴可得:C=$\frac{π}{6}$.
故選:A.
點評 本題主要考查了余弦定理,特殊角的三角函數(shù)值,余弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$,+∞) | B. | ($\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$+∞) | C. | (-∞,$\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$) | D. | (-∞,$\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2$\sqrt{2}$) | B. | (0,4$\sqrt{2}$) | C. | (0,4) | D. | (2$\sqrt{2}$,4$\sqrt{2}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com