對于x<0,f(x)=(a+1)x<1恒成立,則a的取值范圍是
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)的圖象和性質(zhì),建立條件關(guān)系即可得到結(jié)論.
解答: 解:∵當(dāng)x<0時(shí),(a+1)x<1恒成立,
∴a+1>1,即a>0,
故a的取值范圍是(0,+∞),
故答案為:(0,+∞).
點(diǎn)評:本題主要考查不等式恒成立問題,根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正三棱錐的側(cè)面積等于底面積的兩倍,且該正三棱錐的高為
3
,則其表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=ax2+bx+c是奇函數(shù),求a、b、c需滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電腦公司有6名產(chǎn)品推銷員,其中5名推銷員的工作年限與年推銷金額數(shù)據(jù)如下表:
推銷員編號 1 2 3 4 5
工作年限x(年) 3 5 6 7 9
年推銷金額y(萬元) 2 3 3 4 5
(1)求年推銷金額y關(guān)于工作年限x的線性回歸方程.
(2)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四面體ABCD邊長為2.E,F(xiàn)分別為AC,BD中點(diǎn).
(Ⅰ)求證:AC⊥平面EFD;
(Ⅱ)求二面角E-FD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+a+b在區(qū)間[-2,a]上是奇函數(shù),則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值為2014,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex+blnx(a,b為常實(shí)數(shù))的定義域?yàn)镈,關(guān)于函數(shù)f(x)給出下列命題:
①對于任意的正數(shù)a,存在正數(shù)b,使得對于任意的x∈D,都有f(x)>0.
②當(dāng)a>0,b<0時(shí),函數(shù)f(x)存在最小值;
③若ab<0時(shí),則f(x)一定存在極值點(diǎn);
④若ab≠0時(shí),方程f(x)=f′(x)在區(qū)間(1,2)內(nèi)有唯一解;
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面α、β,直線a、b,a?α,b?α,則“a∥β,b∥β”是“α∥β”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案