如圖1,矩形ABCD中,AB=12,AD=6,E、F分別為CD、AB邊上的點(diǎn),且DE=3,BF=4,將△BCE沿BE折起至△PBE位置(如圖2所示),連結(jié)AP、PF,其中PF=2
5

(Ⅰ) 求證:PF⊥平面ABED;
(Ⅱ) 在線段PA上是否存在點(diǎn)Q使得FQ∥平面PBE?若存在,求出點(diǎn)Q的位置;若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ) 求點(diǎn)A到平面PBE的距離.
考點(diǎn):直線與平面所成的角,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連結(jié)EF,由翻折不變性可知,PB=BC=6,PE=CE=9,由已知條件,利用勾股定理推導(dǎo)出PF⊥BF,PF⊥EF,由此能夠證明PF⊥平面ABED.
(Ⅱ) 當(dāng)Q為PA的三等分點(diǎn)(靠近P)時(shí),F(xiàn)Q∥平面PBE.由已知條件推導(dǎo)出FQ∥BP,即可證明FQ∥平面PBE.
(Ⅲ) 由PF⊥平面ABED,知PF為三棱錐P-ABE的高,利用等積法能求出點(diǎn)A到平面PBE的距離.
解答: (本題滿分14分)
解:(Ⅰ)連結(jié)EF,
由翻折不變性可知,PB=BC=6,PE=CE=9,
在△PBF中,PF2+BF2=20+16=36=PB2
所以PF⊥BF…(2分)
在圖1中,利用勾股定理,得EF=
62+(12-3-4)2
=
61
,
在△PEF中,EF2+PF2=61+20=81=PE2,
∴PF⊥EF…(4分)
又∵BF∩EF=F,BF?平面ABED,EF?平面ABED,
∴PF⊥平面ABED.…(6分)
(Ⅱ) 當(dāng)Q為PA的三等分點(diǎn)(靠近P)時(shí),F(xiàn)Q∥平面PBE.
證明如下:
AQ=
2
3
AP
,AF=
2
3
AB
,
∴FQ∥BP…(8分)
又∵FQ不包含于平面PBE,PB?平面PBE,
∴FQ∥平面PBE.…(10分)
(Ⅲ) 由(Ⅰ)知PF⊥平面ABED,
∴PF為三棱錐P-ABE的高.…(11分)
設(shè)點(diǎn)A到平面PBE的距離為h,
由等體積法得VA-PBE=VP-ABE,…(12分)
1
3
×S△PBEh=
1
3
×S△ABE•PF
,
S△PBE=
1
2
×6×9=27
,S△ABE=
1
2
×12×6=36
,
h=
S△ABE•PF
S△PBE
=
36×2
5
27
=
8
5
3
,
即點(diǎn)A到平面PBE的距離為
8
5
3
.…(14分)
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查直線與平面平行的判斷與證明,考查點(diǎn)到平面距離的求法,解題時(shí)要注意空間思維能力的培養(yǎng),要注意等積法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-2|-|x-5|,
(1)求函數(shù)f(x)的值域;
(2)解不等式f(x)≥x2-8x+15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2-x-2
的定義域?yàn)榧螦,函數(shù)g(x)=lg(
3
x
-1)
的定義域?yàn)榧螧,已知p:x∈A∩B;q:x滿足2x+m<0,且若p則q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,E為線段BC的中點(diǎn),AB=1,AD=2,AA1=
2

(Ⅰ)證明:DE⊥平面A1AE;
(Ⅱ)求點(diǎn)A到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
2
sin(x-
π
4
)(0≤x≤π)
,求使f(x)≤cosα恒成立的α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(Ⅰ)“拋物線三角形”一定是
 
三角形(提示:在答題卡上作答);
(Ⅱ)若拋物線m:y=a(x-2)2+b(a>0,b<0)的“拋物線三角形”是直角三角形,求a,b滿足的關(guān)系式;
(Ⅲ)如圖,△OAB是拋物線n:y=-x2+tx(t>0)的“拋物線三角形”,是
否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為3的正方形ABCD中
(1)點(diǎn)E、F分別是AB、BC上的點(diǎn),將△BEF,△AED,△DCF分別沿EF、DE、DF折起,使A、B、C三點(diǎn)重合于點(diǎn)P,求PD與平面EFD所成角的正弦值;
(2)當(dāng)BE=BF=
1
3
BC時(shí),將△AED,△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)Q,求點(diǎn)E到平面QDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,在銳角△PAD中PA=PD,并且BD=2AD=8,AB=2DC=4
5

(1)點(diǎn)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)若PA與平面PBD成角60°,當(dāng)面MBD⊥平面ABCD時(shí),求點(diǎn)M到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖運(yùn)行的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案