【題目】如圖,已知圓與軸的左右交點分別為,與軸正半軸的交點為.
(1)若直線過點并且與圓相切,求直線的方程;
(2)若點是圓上第一象限內(nèi)的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.
【答案】(1)或;(2).
【解析】
(1)首先驗證當直線斜率不存在時,可知滿足題意;當直線斜率不存在時,假設直線方程,利用構(gòu)造方程可求得切線斜率,從而得到結(jié)果;(2)假設直線方程,與圓的方程聯(lián)立可求得;求出直線斜率后,可得,利用可知,從而構(gòu)造方程可求得直線的斜率.
(1)當斜率不存在時,直線方程為:,與圓相切,滿足題意
當斜率存在時,設切線方程為:,即:
由直線與圓相切得:,即:,解得:
切線方程為:,即:
綜上所述,切線方程為:或
(2)由題意易知直線的斜率存在
故設直線的方程為:,
由消去得:
,代入得:
在中,令得:
點是線段的中點
在中,用代得:
且
即:,又,解得:
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),那么下列結(jié)論中錯誤的是( )
A. 若是的極小值點,則在區(qū)間上單調(diào)遞減
B. 函數(shù)的圖像可以是中心對稱圖形
C. ,使
D. 若是的極值點,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系.若直線l的極坐標方程為 ,曲線C的極坐標方程為:ρsin2θ=cosθ,將曲線C上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線C1 .
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點,點P(2,0),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列滿足: ,且 ,其前n項和.
(1)求證:為等比數(shù)列;
(2)記為數(shù)列的前n項和.
(i)當時,求;
(ii)當時,是否存在正整數(shù),使得對于任意正整數(shù),都有?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b﹣ c. (Ⅰ)求角A的大。
(Ⅱ)若B= ,AC=4,求BC邊上的中線AM的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),以直角坐標系的原點為極點,以軸的正半軸為極軸建立坐標系,圓的極坐標方程為.
(1)求圓的直角坐標方程(化為標準方程)及曲線的普通方程;
(2)若圓與曲線的公共弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于無窮數(shù)列,給出下列命題:
①若數(shù)列既是等差數(shù)列,又是等比數(shù)列,則數(shù)列是常數(shù)列.
②若等差數(shù)列滿足,則數(shù)列是常數(shù)列.
③若等比數(shù)列滿足,則數(shù)列是常數(shù)列.
④若各項為正數(shù)的等比數(shù)列滿足,則數(shù)列是常數(shù)列.
其中正確的命題個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com