設(shè)變量x,y滿足
x-y≤0
0≤x+y≤20
0≤y≤15
,則2x+3y的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答: 解:作出不等式對應(yīng)的平面區(qū)域(陰影部分),
由z=2x+3y,得y=-
2
3
x+
z
3
,
平移直線y=-
2
3
x+
z
3
,由圖象可知當(dāng)直線y=-
2
3
x+
z
3
經(jīng)過點A時,直線y=-
2
3
x+
z
3
的截距最大,此時z最大.
y=15
x+y=20
,解得
x=5
y=15
,
即A(5,15).
此時z的最大值為z=2×5+3×15=55,
故答案為:55.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊半橢圓形鋼板,其長半軸長為2r,短半軸長為r,計劃將此鋼板切割成等腰梯形的形狀,下底AB是半橢圓的短軸,上底CD的端點在橢圓上,記CD=2x,梯形面積為S.
(1)求面積S以x為自變量的函數(shù)式,并寫出其定義域;
(2)求S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長軸長為2
2
,一個焦點的坐標(biāo)為(1,0).直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓上不同于A,B的任意一點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)l的斜率k=1,P為橢圓的右頂點.求△ABP的面積.
(Ⅲ)若直線AP,BP的斜率存在且分別為k1,k2.求k1k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一段樓梯共有12個階梯,某人上樓時,有時邁一階有時邁兩階,
(1)此人共用7步走完,問有多少種不同的上樓的方法.
(2)試求此人共有多少種不同的上樓的方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2lnx-x2+ax,a>0,不等式e-1≤f(x)≤e2對x∈[1,e]恒成立,則a的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,Sn=2n+n,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}為等差數(shù)列,前n項和Sn,若a2,a10是方程x2-3x-5=0的兩根,則a6=
 
;S11=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x)在(-∞,0]上是減函數(shù),若f(
1
3
)=2,則滿足不等式f(x)>2的x的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-2x+1-a2<0(a>0)成立的一個充分條件是0<x<4,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案