8.若$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2,$\overrightarrow{PB}$=4$\overrightarrow{AP}$,$\overrightarrow{OP}$=me1+ne2,則m-n等于( 。
A.$\frac{1}{4}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 根據(jù)向量減法的三角形法則,可將$\overrightarrow{PB}$=4$\overrightarrow{AP}$,化為:$\overrightarrow{OB}$-$\overrightarrow{OP}$=4($\overrightarrow{OP}$-$\overrightarrow{OA}$),進而可得$\overrightarrow{OP}$=$\frac{12}{5}$e1+$\frac{7}{5}$e2,進而得到答案.

解答 解:∵$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2,
又∵$\overrightarrow{PB}$=4$\overrightarrow{AP}$,
∴$\overrightarrow{OB}$-$\overrightarrow{OP}$=4($\overrightarrow{OP}$-$\overrightarrow{OA}$),
∴5$\overrightarrow{OP}$=4$\overrightarrow{OA}$+$\overrightarrow{OB}$=12e1+7e2
∴$\overrightarrow{OP}$=$\frac{12}{5}$e1+$\frac{7}{5}$e2,
∴m=$\frac{12}{5}$,n=$\frac{7}{5}$
∴m-n=1,
故選:B

點評 本題考查的知識點是向量的線性運算,平面向量的基本定理,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖所示,則f(1)+f(2)+…+f(2012)=( 。
A.2011B.$\frac{4023}{2}$C.2012D.$\frac{4025}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(2sinx,sinx),$\overrightarrow$=(sinx,2$\sqrt{3}$cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2acosB=bcosC+ccosB,若對任意滿足條件的A,不等式f(A)>m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若x∈R,則函數(shù)f(x)=3-5sinx-cos2x的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,sin2B=2sinA•5sinC.
(I)若a=b,求cosB;
(Ⅱ)設B=90°,且a=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在等比數(shù)列{an}中,a1=$\frac{1}{4}$,8a2,3a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=log16an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知平行四邊形ABCD的三個頂點為A(-3,0),B(2,-2),C(5,2),且對角線交點為M,求頂點D的坐標及點M坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$),g(x)的圖象與f(x)的圖象關于y軸對稱,將g(x)圖象上各點的橫坐標縮短為原來的$\frac{1}{2}$(縱坐標不變),再向左平移$\frac{π}{3}$個單位,那么所得圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{π}{2}$C.x=-$\frac{π}{6}$D.x=-π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.△ABC中,a,b,c分別是角A,B,C的對邊,已知$\overrightarrow{m}$=(2sinA,-3),$\overrightarrow{n}$=(sinA,1+cosA),滿足$\overrightarrow{m}$⊥$\overrightarrow{n}$,且$\sqrt{7}$(c-b)=a.
(1)求角A的大。
(2)求cos(C-$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習冊答案