如圖,在四棱錐中,平面平面,,是等邊三角形,已知.
(1)設(shè)是上的一點,證明:平面平面;
(2)求二面角的余弦值.
(1)詳見試題解析;(2)二面角的余弦值為.
解析試題分析:(1)由勾股定理得:。根據(jù)面面垂直的性質(zhì)定理,可得平面
再由面面垂直的判定定理得:平面平面;
(2)思路一、由于,故可以為原點建立空間直角坐標(biāo)系,利用向量方法可求得二面角的余弦值.
思路二、作出二面角的平面角,然后求平面角的余弦值.
由(1)知平面,所以平面平面
過作的垂線,該垂線即垂直平面
再過垂足作的垂線,將垂足與點連起來,便得二面角的平面角
試題解析:(1)證明:在中,由于,,,
,故.
又,
,,又,
故平面平面 5分
(2)法一、如圖建立空間直角坐標(biāo)系,, ,
, .
設(shè)平面的法向量, 由
令, .
設(shè)平面的法向量, 由
即,令
,二面角的余弦值為 12分
法二、
由(1)知平面,所以平面平面
過作交于,則平面
再過作
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)如圖,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求證:P,Q,R三點共線.
(2)如圖,空間四邊形ABCD中,E,F分別是AB和CB上的點,G,H分別是CD和AD上的點, 且EH與FG相交于點K. 求證:EH,BD,FG三條直線相交于同一點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 三棱柱ABC-A1B1C1中, 側(cè)棱A1A⊥底面ABC,且各棱長均相等. D, E, F分別為棱AB, BC, A1C1的中點.
(Ⅰ) 證明EF//平面A1CD;
(Ⅱ) 證明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直線BC與平面A1CD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com