9.函數(shù)$y=2cos(\frac{π}{4}-2x)$的單調(diào)減區(qū)間是(  )
A.$\{x|kπ+\frac{π}{8}≤x≤kπ+\frac{5π}{8},k∈Z\}$B.{x|kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z}
C.{x|2kπ+$\frac{π}{8}$≤x≤2kπ+$\frac{5π}{8}$,k∈Z}D.{x|2kπ-$\frac{3π}{8}$≤x≤2kπ+$\frac{π}{8}$,k∈Z}

分析 由條件利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的解析式、再利用余弦函數(shù)的單調(diào)性求得函數(shù)$y=2cos(\frac{π}{4}-2x)$的單調(diào)減區(qū)間.

解答 解:對(duì)于函數(shù)$y=2cos(\frac{π}{4}-2x)$=2cos(2x-$\frac{π}{4}$),令2kπ≤2x-$\frac{π}{4}$≤2kπ+π,
求得kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,故函數(shù)f(x)的單調(diào)減區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z,
故選:A.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等差數(shù)列{an}的前n項(xiàng)和是Sn,若M,N,P三點(diǎn)共線,O為坐標(biāo)原點(diǎn),且$\overrightarrow{ON}$=a15$\overrightarrow{OM}$+a6$\overrightarrow{OP}$(直線MP不過點(diǎn)O),則S20等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求值:
(1)sinα-cosα;
(2)sin3(3π-α)+cos3(2π-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖輸入a0=0,a1=1,a2=2,a3=3,x0=-2,它輸出的結(jié)果S是( 。
A.-18B.6C.-3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知sinA是有理數(shù),求證:對(duì)任意正整數(shù)n,cos2nA是有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.sin160°cos10°+cos20°sin10°=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若$a={4^{0.9}},b={8^{0.48}},c={(\frac{1}{2})^{1.5}}$,則a,b,c的大小關(guān)系是a>b>c(用“>”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=m$\overrightarrow{i}$+5$\overrightarrow{j}$-$\overrightarrow{k}$,$\overrightarrow$=3$\overrightarrow{i}$+$\overrightarrow{j}$+r$\overrightarrow{k}$若$\overrightarrow{a}$∥$\overrightarrow$則實(shí)數(shù)m=15,r=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+2cos2$\frac{x}{2}$.
(I)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(II)若f(B)=3,在△ABC中,角 A,B,C的對(duì)邊分別是a,b,c,若b=3,sinC=2sin A,求a,c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案