1.若$a={4^{0.9}},b={8^{0.48}},c={(\frac{1}{2})^{1.5}}$,則a,b,c的大小關(guān)系是a>b>c(用“>”連接).

分析 將a,b,c三個(gè)數(shù)化為同底的指數(shù)冪,再比較大小.

解答 解:將a,b,c三個(gè)數(shù)化為同底的指數(shù)冪,
a=40.9=21.8,
b=80.48=21.44
c=$(\frac{1}{2})^{1.5}$=2-1.5,
根據(jù)指數(shù)函數(shù)y=2x在R上單調(diào)遞增得,a>b>c,
故填:a>b>c.

點(diǎn)評 本題主要考查了指數(shù)函數(shù)的圖象和性質(zhì),涉及運(yùn)用指數(shù)函數(shù)的單調(diào)性比較數(shù)值大小,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在正方體ABCD-A1B1C1D1中,E、F分別是A1A、A1B1的中點(diǎn),求EF與平面A1ACC1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}$=3$\overrightarrow{CD}$,則(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{4}{3}$$\overrightarrow{AB}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=2cos(\frac{π}{4}-2x)$的單調(diào)減區(qū)間是( 。
A.$\{x|kπ+\frac{π}{8}≤x≤kπ+\frac{5π}{8},k∈Z\}$B.{x|kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z}
C.{x|2kπ+$\frac{π}{8}$≤x≤2kπ+$\frac{5π}{8}$,k∈Z}D.{x|2kπ-$\frac{3π}{8}$≤x≤2kπ+$\frac{π}{8}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,既是偶數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.$y=\frac{1}{x}$B.y=exC.y=-x2D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z=4i2016-$\frac{5i}{1+2i}$(其中i為虛數(shù)單位)對應(yīng)點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=|lnx|,設(shè)0<a<b,且f(a)=f(b),則a+2b的取值范圍是( 。
A.[3,+∞)B.(3,+∞)C.$[2\sqrt{2},+∞)$D.$(2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的漸近線和圓x2+y2-6y+8=0相切,則該雙曲線的離心率等于(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.x2+(y+2)2=3的圓心坐標(biāo)、半徑分別為(  )
A.(0,2);3B.(0,-2);3C.$({0,2});\sqrt{3}$D.$({0,-2});\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案