函數(shù)y=sin4x-cos4x在[-
π
12
,
π
3
]的最小值是( 。
A、-1
B、-
3
2
C、
1
2
D、1
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:利用平方差公式將函數(shù)解析式變形,再利用同角三角函數(shù)間的基本關系及二倍角的余弦函數(shù)公式化簡,整理為一個角的余弦函數(shù),由余弦函數(shù)的值域即可確定出范圍.
解答: 解:∵y=sin4x-cos4x=(sin2x-cos2x)(sin2x+cos2x)=-cos2x,
∴當x∈[-
π
12
,
π
3
]時,2x∈[-
π
6
,
3
],
∴-
1
2
≤cos2x≤1,即-1≤-cos2x≤
1
2

則y的最小值為-1.
故選:A.
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

考察某種針劑對預防疾病的效果,進行的試驗數(shù)據(jù)記錄如下:注射針劑患病的有12例,未患病的有48例;沒注射針劑患病的有22例,未患病的有35例,根據(jù)所學知識,你認為針劑無效這一結論的可能性約為
 
(百分數(shù)要為整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x∈Z,n∈N*,定義
M
n
x
=x(x+1)(x+2)…(x+n-1),則函數(shù)f(x)=
M
11
x-5
的奇偶性是( 。
A、f(x)為偶函數(shù),不是奇函數(shù)
B、f(x)為奇函數(shù),不是偶函數(shù)
C、f(x)既是偶函數(shù),又是奇函數(shù)
D、f(x)既不是偶函數(shù),又不是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,點D是BC的中點,過點D的直線分別交直線AB、AC于E、F兩點,若
AB
=λ
AE
AC
AF
(λ>0,μ>0),則
1
λ
+
4
μ
的最小值為( 。
A、
9
2
B、
13
2
C、
15
2
D、
17
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|(x-1)(x-5)<0},B={x|log2x≤2},則集合A∩B=( 。
A、{x|0<x<4}
B、{x|0<x<5}
C、{x|1<x≤4}
D、{x|4≤x<5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內,復數(shù)z和
2i
2-i
表示的點關于虛軸對稱,則復數(shù)z=( 。
A、
2
5
+
4
5
i
B、
2
5
-
4
5
i
C、-
2
5
+
4
5
i
D、-
2
5
-
4
5
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足
1+z
i
=1-z,則z的虛部為(  )
A、-1B、-iC、1D、i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(-4)<f(1),則(  )
A、a>0,4a-b=0
B、a<0,4a-b=0
C、a>0,2a-b=0
D、a<0,2a-b=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的不等式ax2-|x+1|+3a≥0的解集為(-∞,+∞),則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案