精英家教網 > 高中數學 > 題目詳情
某校高二(4)班有男生28人,女生21人,用分層抽樣的方法從全班學生中抽取一個調查小組,調查該校學生對2013年1月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為
1
7
,則抽取的女生人數為
 
考點:概率的基本性質
專題:概率與統(tǒng)計
分析:由題意知抽樣比為
1
7
,由此能求出抽取的女生人數.
解答: 解:由題意知抽樣比為
1
7
,
∴抽取的女生人數為:
21×
1
7
=3.
故答案為:3.
點評:本題考查分層抽樣的應用,解題時要認真審題,注意概率的性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,一塊邊長為10的正方形鐵片,從它的四個角各剪去一個邊長為x的小正方形,把剩下的鐵片做成一個沒有蓋子的盒子,求當x是多少時,盒子的容積最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

我們把一系列向量
ai
(i=1,2,…,n…)排成一列,稱為向量列,記作{
an
},又設
an
=(xn,yn),假設向量列{
an
}滿足:
a1
=(
2
2
),
an
=
1
2
2
3
xn-1-yn-1,xn-1+
3
yn-1)(n≥2).
(1)證明數列{|
an
|}是等比數列;
(2)設θn表示向量
an
,
an+1
(n∈N*)間的夾角,若bn=sin2nθn,記{bn}的前n項和為Sn,求S3m;
(3)設f(x)是R上不恒為零的函數,且對任意的a,b∈R,都有f(a•b)=af(b)+bf(a),若f(2)=2,un=
f(
|
an
|2
8
)
n
(n∈N*),求數列{un}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和為Sn,且有Sn=3n-2,則通項公式an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}是一個公差不為0等差數列,且a2=2,并且a3,a6,a12成等比數列,則
1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
anan+1
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

用更相減損術求459與357的最大公約數是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-3x.則函數g(x)=f(x)-x+3的零點的集合為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的奇函數,對?x∈R恒有f(x+1)=f(x-1)-f(2),且當x∈(1,2)時,f(x)=x2-3x+1,則f(
1
2
)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=
1
log0.5x
的定義域為
 

查看答案和解析>>

同步練習冊答案