已知數(shù)列{an}是一個(gè)公差不為0等差數(shù)列,且a2=2,并且a3,a6,a12成等比數(shù)列,則
1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
anan+1
=
 
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:先求出公差,可得數(shù)列的通項(xiàng),再利用裂項(xiàng)法求和即可.
解答: 解:∵數(shù)列{an}是一個(gè)公差不為0等差數(shù)列,且a2=2,并且a3,a6,a12成等比數(shù)列,
∴a62=a3•a12,
∴(2+4d)2=(2+d)(2+10d),
∵d≠0,∴d=1.
∴an=2+(n-2)=n,
1
anan+1
=
1
n
-
1
n+1

1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
anan+1
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
,
故答案為:
n
n+1
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng),裂項(xiàng)法,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,若
AB
AC
=12,a=2,∠A=30°,求b,c(b<c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線P:x2=4y(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)F作直線l與P交于A,B兩點(diǎn),P的準(zhǔn)線與y軸交于點(diǎn)C.
(Ⅰ)證明:直線CA與CB關(guān)于y軸對(duì)稱;
(Ⅱ)當(dāng)直線CB的傾斜角為45°時(shí),求△ABC內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的中線AD,BE交于K,AB=
3
,且K,D,C,E四點(diǎn)共圓,則CK=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x-4)=f(x),且在區(qū)間[0,2]上f(x)=x.若關(guān)于x的方程f(x)=logax有三個(gè)不同的根,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高二(4)班有男生28人,女生21人,用分層抽樣的方法從全班學(xué)生中抽取一個(gè)調(diào)查小組,調(diào)查該校學(xué)生對(duì)2013年1月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為
1
7
,則抽取的女生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(-5,0),(5,0),邊AC,BC所在直線的斜率之積為-
1
2
,則頂點(diǎn)C的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:-2≤x≤10,q:1-m≤x≤1+m(m>0),已知“若﹁q,則﹁p”為真命題,求m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinθ,2),
b
=(cosθ,1),且
a
b
,則tan2θ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案