【題目】已知函數(shù)(為自然對(duì)數(shù)的底,,為常數(shù)且)
(1)當(dāng)時(shí),討論函數(shù)在區(qū)間上的單調(diào)性;
(2)當(dāng)時(shí),若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)時(shí),求得,當(dāng)時(shí),恒有.當(dāng)時(shí),由,得,由,得,再由和分類(lèi)討論,能求出結(jié)果.
(2)當(dāng)時(shí),求得,推導(dǎo)出,再由和進(jìn)行分類(lèi)討論經(jīng),利用導(dǎo)數(shù)的性質(zhì)能求出足條件的實(shí)數(shù)的取值范圍.
(1)由題知時(shí),,, ,
①當(dāng)時(shí),得函數(shù)在上單調(diào)遞減;
②當(dāng)時(shí),由,得,由,得,
Ⅰ.當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;
Ⅱ.當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增.
(2)時(shí),,
則,
由(1)知,函數(shù)在區(qū)間上單調(diào)遞增,
所以當(dāng)時(shí),,即,
∴.
①當(dāng)時(shí),在區(qū)間上恒成立,即在上單調(diào)遞增,
∴(合題意).
②當(dāng)時(shí),
由,得,且在上單調(diào)遞增,
又,,,,
故在上存在唯一的零點(diǎn),當(dāng)時(shí),,
即在上遞減,此時(shí),知在上遞減,
此時(shí)與已知矛盾(不合題意),
綜上:滿足條件的實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),連結(jié),當(dāng)的面積最大時(shí),__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校夏令營(yíng)有3名男同學(xué)和3名女同學(xué),其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)
用表中字母列舉出所有可能的結(jié)果
設(shè)為事件“選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年開(kāi)始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.
(1)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如表是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
(2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
附參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的離心率為,短軸長(zhǎng)是2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過(guò)點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,得到地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表.
地區(qū)用戶滿意度評(píng)分的頻率分布直方圖如下:
地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表如下:
(1)在圖中作出地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過(guò)直方圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可).
地區(qū)用戶滿意度評(píng)分的頻率分布直方圖
(2)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度分為三個(gè)等級(jí):
公司負(fù)責(zé)人為了解用戶滿意度情況,從B地區(qū)調(diào)查8戶,其中有兩戶滿意度等級(jí)是不滿意.求從這8戶中隨機(jī)抽取2戶檢查,抽到不滿意用戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=CD,M是線段DE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使BE∥平面MAC,并說(shuō)明理由;
(2)在(1)的條件下,四面體E-MAC的體積為3,求線段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)是否存在負(fù)實(shí)數(shù)a,使,函數(shù)有最小值-3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com