(滿分16分)
記函數(shù)f(x)的定義域?yàn)镈,若存在,使成立,則稱以為坐標(biāo)的點(diǎn)為函數(shù)圖象上的不動(dòng)點(diǎn)。
(1)若函數(shù)的圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求應(yīng)滿足的條件;
(2)下述結(jié)論“若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明,并舉出一例;若不正確,請(qǐng)舉出一反例說(shuō)明


(1)
(2)證明略

解析解:(1)由, …………………………………………2分
整理得   ……………………………………4分
由題意知方程(*)有兩個(gè)互為相反數(shù)的根,所以………6分
,,……………………………………………………8分
應(yīng)滿足……………………………………………………10分
(2)結(jié)論正確!12分
證明:為奇函數(shù),,取,得
即(0,0)為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù)除0以外還有不動(dòng)點(diǎn)

,故也為函數(shù)的不動(dòng)點(diǎn)!14分
綜上,若定義在R上的奇函數(shù)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)。
例如:!16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)
已知:函數(shù)(a、b、c是常數(shù))是奇函數(shù),且滿足
(1)求a、b、c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0,)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
醫(yī)學(xué)上為研究某種傳染病傳播過(guò)程中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實(shí)驗(yàn),經(jīng)檢測(cè),病毒細(xì)胞在體內(nèi)的總數(shù)與天數(shù)的關(guān)系記錄如下表.已知該種病毒細(xì)胞在小白鼠體內(nèi)的個(gè)數(shù)超過(guò)的時(shí)候小白鼠將死亡.但注射某種藥物,將可殺死此時(shí)其體內(nèi)該病毒細(xì)胞的.

(Ⅰ) 為了使小白鼠在實(shí)驗(yàn)過(guò)程中不死亡,第一次最遲應(yīng)在何時(shí)注射該種藥物?(精確到天)
(Ⅱ)第二次最遲應(yīng)在何時(shí)注射該種藥物,才能維持小白鼠的生命?(精確到天)
(參考數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最大值和最小正周期;    
(2)設(shè)A,B,C為三個(gè)內(nèi)角,若,,且C為銳角,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)求函數(shù)的單調(diào)區(qū)間及極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為。
(1)求證P的縱坐標(biāo)為定值;   (4分)
(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和;    (5分)
(3)若m∈N時(shí),不等式橫成立,求實(shí)數(shù)a的取值范圍。(3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域?yàn)閇](),判斷在定義域上的增減性,并加以證明;
(3)若,使的值域?yàn)閇]的定義域區(qū)間[]()是否存在?若存在,求出[],若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)
討論a,b的取值對(duì)一次函數(shù)y=ax+b單調(diào)性和奇偶性的影響,并畫出草圖。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題滿分12分)
某公司預(yù)計(jì)全年分批購(gòu)入每臺(tái)價(jià)值為2000元的電視機(jī)共3600臺(tái),每批都購(gòu)入x臺(tái),且每批均需付運(yùn)費(fèi)400元,儲(chǔ)存購(gòu)入的電視機(jī)全年所付保管費(fèi)與每批購(gòu)入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比。若每批購(gòu)入400臺(tái),則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元,F(xiàn)在全年只有24000元資金用于支付運(yùn)費(fèi)和保管費(fèi),請(qǐng)問(wèn)能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論并說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案