【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O,與直線l交于點(diǎn)B,求的最大值.

【答案】1,直線;(2

【解析】

1)由消參法把參數(shù)方程化為普通方程,再由公式進(jìn)行直角坐標(biāo)方程與極坐標(biāo)方程的互化;

2)由極徑的定義可直接把代入曲線和直線的極坐標(biāo)方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、

1)消去參數(shù)可得曲線的普通方程是,即,代入,即,曲線的極坐標(biāo)方程是;

,化為直角坐標(biāo)方程為

2)設(shè),則,

,

當(dāng)時(shí),取得最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為,且滿足,,.

1)求數(shù)列{an}的通項(xiàng)公式;

2)記.

①求Tn;

②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)的圖象在點(diǎn)處的切線的斜率為1,問:在什么范圍取值時(shí),對于任意的,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是2020215日至32日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說法不正確的是(

A.2020219日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)

B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低

C.2020219日至32日武漢市新增新冠肺炎確診病例低于400人的有8

D.2020215日到32日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時(shí),求證:上單調(diào)遞減;

2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖中有一個(gè)信號源和五個(gè)接收器.接收器與信號源在同一個(gè)串聯(lián)線路中時(shí),就能接收到信號,否則就不能接收到信號.若將圖中左端的六個(gè)接線點(diǎn)隨機(jī)地平均分成三組,將右端的六個(gè)接線點(diǎn)也隨機(jī)地平均分成三組,再把所得六組中每組的兩個(gè)接線點(diǎn)用導(dǎo)線連接,則這五個(gè)接收器能同時(shí)接收到信號的概率是( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).
(1)求該函數(shù)的最小正周期和最小值;
(2),求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】房屋的天花板上點(diǎn)處有一光源,在地面上的射影為,在地面上放置正棱錐,底面接觸地面.已知正四棱錐的高為,底面的邊長為與正方形的中心的距離為,又長為,則棱錐影子(不包括底面)的面積的最大值為________

查看答案和解析>>

同步練習(xí)冊答案