19.求下列函數(shù)在所給區(qū)間上的最大值和最小值:
(1)f(x)=3x+2,x∈[-1,3];
(2)f(x)=x2-3x,x∈[-1,3];
(3)f(x)=x+$\frac{1}{x}$,x∈[$\frac{1}{3}$,3].

分析 確定函數(shù)在所給區(qū)間上的單調(diào)性,即可求出函數(shù)在所給區(qū)間上的最大值和最小值.

解答 解:(1)f(x)=3x+2,x∈[-1,3],函數(shù)單調(diào)遞增,∴x=-1時,函數(shù)取得最小值-1,x=2時,函數(shù)取得最大值11;
(2)f(x)=x2-3x=(x-$\frac{3}{2}$)2-$\frac{9}{4}$,∵x∈[-1,3],∴x=$\frac{3}{2}$時,函數(shù)取得最小值-$\frac{9}{4}$,x=-1時,函數(shù)取得最大值4;
(3)f(x)=x+$\frac{1}{x}$,x∈[$\frac{1}{3}$,3],函數(shù)在[$\frac{1}{3}$,1]上單調(diào)遞減,[1,3]上單調(diào)遞增],∴x=1時,函數(shù)取得最小值2,x=$\frac{1}{3}$或3時,函數(shù)取得最大值$\frac{10}{3}$.

點(diǎn)評 本題考查函數(shù)在所給區(qū)間上的最大值和最小值,考查函數(shù)的單調(diào)性,正確確定函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1中,D是AC的中點(diǎn),求證:B1C∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,∠DAB=∠ABC=90°,PA⊥平面ABCD,點(diǎn)E是PA的中點(diǎn),AB=BC=1,AD=2.求證:
(1)平面PCD⊥平面PAC;
(2)BE∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正四棱錐S-ABCD的底面邊長為a,側(cè)棱長為2a,點(diǎn)P,Q分別在BD和SC上,并且BP:PD=1:3,PQ∥平面SAD,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若點(diǎn)P到直線x=2的距離比它到點(diǎn)(-1,0)的距離大1,則點(diǎn)P的軌跡為( 。
A.B.拋物線C.雙曲線D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,已知曲柄連桿機(jī)構(gòu)中的OA=0.45m,AP=2.25m,當(dāng)α=0°時,P和Q重合,設(shè)P、Q距離為x,求在下列條件下x的值(精確到0.01m).
(1)α=30°;(2)α=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左右頂點(diǎn)分別為A1,A2,直線l:x=8與x軸交于點(diǎn)T0,T為l上異于T0的任意一點(diǎn),直線TA1,TA2分別與橢圓C交于M,N兩點(diǎn),則直線MN恒過定點(diǎn)$(\frac{1}{2},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}中.a(chǎn)1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}{a}_{n}$.
(1)證明數(shù)列{$\frac{{a}_{n}}{n}$}是等比數(shù)列;
(2)求數(shù)列{an}前n項(xiàng)的和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若C=2B,則$\frac{c}$的取值范圍是( 。
A.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$)B.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)C.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{3}$)D.($\sqrt{3}$,$\sqrt{2}$)

查看答案和解析>>

同步練習(xí)冊答案