14.(1)已知a+a-1=5,求a2+a-2的值;
(2)計算:|($\frac{4}{9}$)${\;}^{-\frac{1}{2}}$-lg5|+$\sqrt{l{g}^{2}2-lg4+1}$-3${\;}^{1-lo{g}_{3}2}$.

分析 (1)根據(jù):a2+a-2=(a+a-12-2可得;
(2)根據(jù)指數(shù)與對數(shù)的運算性質可得.

解答 解:(1)已知等式平方得:(a+a-12=a2+a-2+2=25,
∴a2+a-2=23.
(2)原式=|[$(\frac{3}{2})^{-2}]^{-\frac{1}{2}}$${\;}^{-\frac{1}{2}}$-lg5|+$\sqrt{l{g}^{2}2-2lg2+1}$-3×3${\;}^{-lo{{g}_{3}}^{2}}$
=$|\frac{3}{2}-lg5|$+1-lg2-$\frac{3}{2}$
=$\frac{3}{2}-$lg5+1-lg2-$\frac{3}{2}$
=1-(lg5+lg2)
=0.

點評 本題主要考查指數(shù)與對數(shù)的運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.集合A={x|9x+p•3x+q=0,x∈R},B={x|q•9x+p•3x+1=0,x∈R},且實數(shù)pq≠0
(1)證明:若x0∈A,則-x0∈B;
(2)是否存在實數(shù)p,q滿足A∩B≠∅且A∩CRB={1}?若存在,求出p,q的值,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的圖象如圖所示,為了得到g(x)=Asinωx的圖象,可將f(x)的圖象(  )
A.向右平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=x({\frac{2}{{{2^x}-1}}+k})$為偶函數(shù).
(1)求k的值;
(2)若$g(x)=\frac{f(x)}{x}$,當x∈(0,1]時,求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=e2x+sinx-3x2+3x-1,g(x)=ax2+a2lnx(a∈R).
(1)若a=-1,求g(x)的極大值;
(2)若?x1∈[0,1],?x2∈(0,1],都有f(x1)≥g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一次函數(shù)f(x)的圖象過點A(0,3)和B(4,1),則f(x)的單調性為( 。
A.增函數(shù)B.減函數(shù)C.先減后增D.先增后減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知橢圓的對稱軸是坐標軸,離心率e=$\frac{2}{3}$,長軸長為6,則橢圓的方程( 。
A.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1$B.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1或\frac{{x}^{2}}{20}+\frac{{y}^{2}}{36}=1$
C.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$D.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1或\frac{{x}^{2}}{5}+\frac{{y}^{2}}{9}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:?x∈R,3x>2x;命題q:?x∈R,tanx=2,則下列命題為真命題的是( 。
A.p∧qB.p∧(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R,都有f(2+x)=f(2-x),當f(-3)=-2時,f(2015)的值為( 。
A.-2B.2C.-4D.4

查看答案和解析>>

同步練習冊答案