【題目】如圖,已知圓: ,點(diǎn).
(1)求經(jīng)過(guò)點(diǎn)且與圓相切的直線的方程;
(2)過(guò)點(diǎn)的直線與圓相交于、兩點(diǎn),為線段的中點(diǎn),求線段長(zhǎng)度的取值范圍.
【答案】(1)或;(2).
【解析】
試題(1)設(shè)直線方程點(diǎn)斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗(yàn)證斜率不存在情況是否滿足題意(2)先求點(diǎn)的軌跡:為圓,再根據(jù)點(diǎn)到圓上點(diǎn)距離關(guān)系確定最值
試題解析:(1)當(dāng)過(guò)點(diǎn)直線的斜率不存在時(shí),其方程為,滿足條件.
當(dāng)切線的斜率存在時(shí),設(shè): ,即,
圓心到切線的距離等于半徑3,
,解得.
切線方程為,即
故所求直線的方程為或.
(2)由題意可得, 點(diǎn)的軌跡是以為直徑的圓,記為圓.
則圓的方程為.
從而,
所以線段長(zhǎng)度的最大值為,最小值為,
所以線段長(zhǎng)度的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(x0 , 0),B(0,y0)兩點(diǎn)分別在x軸和y軸上運(yùn)動(dòng),且|AB|=1,若動(dòng)點(diǎn)P(x,y)滿足 .
(1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線l1與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程;
(3)直線l2:x=ty+1與曲線C交于A、B兩點(diǎn),E(1,0),試問(wèn):當(dāng)t變化時(shí),是否存在一直線l2 , 使△ABE的面積為 ?若存在,求出直線l2的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2x,過(guò)點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)設(shè)圓M過(guò)點(diǎn)P(4,﹣2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N+),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 .
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nb2n﹣1}的前n項(xiàng)和(n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“雙一流A類(lèi)”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問(wèn)卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬(wàn)元到2.35萬(wàn)元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)為感謝同學(xué)們對(duì)這項(xiàng)調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈(zèng)送一份禮品,并從這6人中再抽取2人,各贈(zèng)送某款智能手機(jī)1部,求獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬(wàn)元的概率;
(2)同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.
(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;
(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國(guó)慶長(zhǎng)假期間舉辦一次同學(xué)聯(lián)誼會(huì),并收取一定的活動(dòng)費(fèi)用,有兩種收費(fèi)方案:
方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.
方案二:按每人一個(gè)月薪水的3%收取;用該校就業(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對(duì)任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.
(Ⅰ)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
(Ⅱ)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一個(gè)平面內(nèi),向量 , , 的模分別為1,1, , 與 的夾角為α,且tanα=7, 與 的夾角為45°.若 =m +n (m,n∈R),則m+n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中, 兩兩垂直,且, , ,
.
(Ⅰ) 若點(diǎn)在線段上,且,求證: 平面;
(Ⅱ)求直線與平面所成的角的正弦值;
(Ⅲ)求銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com