已知四棱錐的底面是正方形,側(cè)面都是高為
3
的等邊三角形,求這個(gè)四棱錐的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由四棱錐的底面是正方形,側(cè)面都是高為
3
的等邊三角形,求出底面邊長與體高,求體積.
解答: 解:∵側(cè)面都是高為
3
的等邊三角形,
∴等邊三角形的邊長為
3
3
2
=2
,
故正方形的邊長為2;
則四棱錐的體高為
3
2
-1
=
2
,
則V=
1
3
22
2
=
4
2
3
點(diǎn)評(píng):考查了學(xué)生的空間想象力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某商店為了吸引顧客,設(shè)計(jì)了一個(gè)摸球小游戲,顧客從裝有1個(gè)紅球,1個(gè)白球,3個(gè)黑球的袋中一次隨機(jī)的摸2個(gè)球,設(shè)計(jì)獎(jiǎng)勵(lì)方式如下表:
結(jié)果獎(jiǎng)勵(lì)
1紅1白10元
1紅1黑5元
2黑2元
1白1黑不獲獎(jiǎng)
(1)某顧客在一次摸球中獲得獎(jiǎng)勵(lì)X元,求X的概率分布表與數(shù)學(xué)期望;
(2)某顧客參與兩次摸球,求他能中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩位同學(xué)參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 82  81  79  78  95  88  93  84
乙 92  95  80  75  83  80  90  85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?
(3)若將頻率視為概率,求甲同學(xué)在今后的數(shù)學(xué)競賽成績高于80的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(Ⅰ)求f(0)的值;
(Ⅱ)求函數(shù)f(x)的解析式;
(Ⅲ)對(duì)任意的x1∈(0,
1
2
),x2∈(0,
1
2
),都有f(x1)+2<logax2成立時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2<x<3},B={x|
4
x+3
>1}.
(1)求集合A∩B;
(2)若不等式2ax2-2bx+3a2b<0的解集為B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:
x-
1
a
x2-x-2
>0,(a≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
p
q
,而
p
=(2-4sin2
ωx
2
,1),
q
=(cosωx,
3
sin2ωx)(x∈R).
(1)若f(
π
3
)最大,求ω能取到的最小正數(shù)值;
(2)對(duì)(1)中的ω,若f(x)=(2+
3
)sinx+1且x∈(0,
π
2
),求tan
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈N|0<x<3},則集合A的子集的個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b∈R,a2+2b2=8,則a+b的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案