分析 由已知條件推導(dǎo)出an+1=$\frac{{a}_{n}+2}{2}+\frac{2}{{a}_{n}+2}$-2,再求出數(shù)列的前四項,由此結(jié)合數(shù)列的單調(diào)性能證明a1+a2+…+an<$\frac{8}{3}$(n∈N*).
解答 證明:∵定義在(0,+∞)上的函數(shù)f(x)=$\frac{x^2}{4}+\frac{4}{x^2}$+2=($\frac{x}{2}+\frac{2}{x}$)2,
數(shù)列{an}滿足a1=2,an+1+2=$\sqrt{f({a}_{n}+2)}$,an>0,n∈N*.
∴an+1+2=$\sqrt{f({a}_{n}+2)}$=$\sqrt{(\frac{{a}_{n}+2}{2}+\frac{2}{{a}_{n}+2})^{2}}$=$\frac{{a}_{n}+2}{2}+\frac{2}{{a}_{n}+2}$,
∴an+1=$\frac{{a}_{n}+2}{2}+\frac{2}{{a}_{n}+2}$-2,
∴${a}_{2}=\frac{2+2}{2}+\frac{2}{2+2}-2=\frac{1}{2}$,
${a}_{3}=\frac{\frac{1}{2}+2}{2}+\frac{2}{\frac{1}{2}+2}-2$=$\frac{1}{20}$,
${a}_{4}=\frac{\frac{1}{20}+2}{2}+\frac{2}{\frac{1}{20}+2}-2$=$\frac{1}{1640}$,
$\frac{8}{3}$-(a1+a2+a3)=$\frac{8}{3}-(2+\frac{1}{2}+\frac{1}{20})$=$\frac{7}{60}$>${a}_{4}=\frac{1}{1640}$,
∵{an}是減數(shù)列,n→+∞時,an→0,
∴a1+a2+…+an<$\frac{8}{3}$(n∈N*).
點評 本題考查數(shù)列的前n項和小于$\frac{8}{3}$的證明,是中檔題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)、完全平方和公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com