函數(shù)y=3sin(
x
2
+
π
3
)的圖象可由函數(shù)y=3sinx經(jīng)(  )變換而得.
A、先把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變),再向左平移
π
6
個(gè)單位
B、先把橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向右平移
π
3
個(gè)單位
C、先向右平移
π
3
個(gè)單位,再把橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變)
D、先向左平移
π
3
個(gè)單位,再把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:由函數(shù)y=3sinx的圖象先向左平移
π
3
個(gè)單位,可得函數(shù)y=3sin(x+
π
3
)的圖象,
再把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變),可得函數(shù)y=3sin(
1
2
x+
π
3
)的圖象,
故選:D.
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=ax-1-2(a>0,且a≠1)的圖象恒過點(diǎn)P,則點(diǎn)P為( 。
A、(0,-1)
B、(0,-2)
C、(1,-2)
D、(1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是銳角△ABC外接圓的圓心,且∠A=30°,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m=( 。
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+
3
y-m=0與圓x2+y2=1交于A,B兩點(diǎn),則與
OA
+
OB
共線的向量為(  )
A、(
1
2
,-
3
3
B、(
1
2
3
2
C、(-1,
3
D、(1,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,給定由15個(gè)點(diǎn)(任意相鄰兩點(diǎn)間距離為1)組成的正三角形點(diǎn)陣,在其中任意取3個(gè)點(diǎn),以這3個(gè)點(diǎn)為頂點(diǎn)構(gòu)成的正三角形的個(gè)數(shù)是(  )
A、15B、28C、29D、33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3ax2+2bx+c,a+b+c=0,f(0)•f(1)>0,求證:
(1)f(x)=0有實(shí)根;
(2)-2<
b
a
<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式k(x-2)>x+6
(1)解該不等式;
(2)若1不是不等式的解,0是不等式的解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1)在等腰△ABC中,D,E,F(xiàn)分別是AB,AC和BC邊的中點(diǎn),∠ACB=120?,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.(如圖(2))
(Ⅰ)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(Ⅱ)求二面角E-DF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA=PD,PA⊥AB,點(diǎn)E、F分別是棱AD、BC的中點(diǎn).
(Ⅰ)求證:AB⊥PD;
(Ⅱ)若AB=AP,求平面PAD與平面PBC所成銳二面角的余弦值;
(Ⅲ)若△PAD的面積為1,在四棱錐P-ABCD內(nèi)部,放入一個(gè)半徑為R的球O,且球心O在截面PEF中,試探究R的最大值,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案