【題目】已知橢圓.
(Ⅰ)若的一個焦點為,且點在上,求橢圓的方程;
(Ⅱ)已知上有兩個動點,為坐標原點,且,求線段的最小值(用表示).
科目:高中數學 來源: 題型:
【題目】為了釋放學生壓力,某校高三年級一班進行了一個投籃游戲,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得分.設甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.
(1)經過輪投籃,記甲的得分為,求的分布列及期望;
(2)若經過輪投籃,用表示第輪投籃后,甲的累計得分低于乙的累計得分的概率.
①求;
②規(guī)定,經過計算機模擬計算可得,請根據①中值求出的值,并由此求出數列的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率為,設直線過橢圓的上頂點和右焦點,坐標原點到直線的距離為2.
(1)求橢圓的方程.
(2)過點且斜率不為零的直線交橢圓于,兩點,在軸的正半軸上是否存在定點,使得直線,的斜率之積為非零的常數?若存在,求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面α∩平面β=l,A,C是α內不同的兩點,B,D是β內不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是( 。
A.若ABCD,則MNl
B.若M,N重合,則ACl
C.若AB與CD相交,且ACl,則BD可以與l相交
D.若AB與CD是異面直線,則MN不可能與l平行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】哈三中總務處的老師要購買學校教學用的粉筆,并且有非常明確的判斷一盒粉筆是“優(yōu)質產品”和“非優(yōu)質產品”的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據以往的經驗,其中會有某些盒的粉筆為非優(yōu)質產品,其余的都為優(yōu)質產品.并且每箱含有0,1,2盒非優(yōu)質產品粉筆的概率為0.7,0.2和0.1.為了購買該品牌的粉筆,?倓罩魅卧O計了一種購買的方案:欲買一箱粉筆,隨機查看該箱的4盒粉筆,如果沒有非優(yōu)質產品,則購買,否則不購買.設“買下所查看的一箱粉筆”為事件,“箱中有件非優(yōu)質產品”為事件.
(1)求,,;
(2)隨機查看該品牌粉筆某一箱中的四盒,設為非優(yōu)質產品的盒數,求的分布列及期望;
(3)若購買100箱該品牌粉筆,如果按照主任所設計方案購買的粉筆中,箱中每盒粉筆都是優(yōu)質產品的箱數的期望比隨機購買的箱中每盒粉筆都是優(yōu)質產品的箱數的期望大10,則所設計的方案有效.討論該方案是否有效.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為進一步深化“平安校園”創(chuàng)建活動,加強校園安全教育宣傳,某高中對該校學生進行了安全教育知識測試(滿分100分),并從中隨機抽取了200名學生的成績,經過數據分析得到如圖1所示的頻數分布表,并繪制了得分在以及的莖葉圖,分別如圖23所示.
成績 | |||||||
頻數 | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
圖1
(1)求這200名同學得分的平均數;(同組數據用區(qū)間中點值作代表)
(2)如果變量滿足且,則稱變量“近似滿足正態(tài)分布的概率分布”.經計算知樣本方差為210,現在取和分別為樣本平均數和方差,以樣本估計總體,將頻率視為概率,如果該校學生的得分“近似滿足正態(tài)分布的概率分布”,則認為該校的校園安全教育是成功的,否則視為不成功.試判斷該校的安全教育是否成功,并說明理由.
(3)學校決定對90分及以上的同學進行獎勵,為了體現趣味性,采用抽獎的方式進行,其中得分不低于94的同學有兩次抽獎機會,低于94的同學只有一次抽獎機會,每次抽獎的獎金及對應的概率分別為:
獎金 | 50 | 100 |
概率 |
現在從不低于90同學中隨機選一名同學,記其獲獎金額為,以樣本估計總體,將頻率視為概率,求的分布列和數學期望.
(參考數據:)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com