【題目】抽樣統(tǒng)計甲、乙兩位射擊運動員的5次訓(xùn)練成績(單位:環(huán)),結(jié)果如下:

運動員

第一次

第二次

第三次

第四次

第五次

87

91

90

89

93

89

90

91

88

92

則成績較為穩(wěn)定(方差較小)的那位運動員成績的方差為

【答案】2
【解析】解:由圖表得到甲乙兩位射擊運動員的數(shù)據(jù)分別為:
甲:87,91,90,89,93;
乙:89,90,91,88,92;
,

方差 =4.
=2.
所以乙運動員的成績較穩(wěn)定,方差為2.
所以答案是2.
【考點精析】解答此題的關(guān)鍵在于理解極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識,掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若處的切線與處的切線平行,求實數(shù)的值;

(2)若,討論的單調(diào)性;

(3)在(2)的條件下,若,求證:函數(shù)只有一個零點,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為

1)求過點且與圓相切的直線的方程;

2)直線過點,且與圓交于兩點,若,求直線的方程;

3是圓上一動點,,若點的中點,求動點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I黑色月牙部分記為,兩小月牙之和(斜線部分)部分記為.在整個圖形中隨機取一點,此點取自,,的概率分別記為p1,p2,p3,則()

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,D是△ABC外接圓上 上的點(不與點A、C重合),延長BD至F.

(1)求證:AD延長線DF平分∠CDE;
(2)若∠BAC=30°,△ABC中BC邊上的高為2+ ,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證: ;
(2)設(shè) =(0,1),若 + = ,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且有,則不等式的解集為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線與直線垂直.

(1)求函數(shù)的極值;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,已知點A5,-2,B7,3,且邊AC的中點M在y軸上,邊BC的中點N在x軸上,求:

(1)頂點C的坐標(biāo);

(2)直線MN的方程.

查看答案和解析>>

同步練習(xí)冊答案