設(shè)曲線y=x3與直線y=x所圍成的封閉區(qū)域的面積為S,則下列等式成立的是( 。
A、S=
1
-1
(x3-x)dx
B、S=
1
-1
(x-x3)dx
C、S=
1
0
|x3-x|dx
D、S=2
1
0
(x-x3)dx
考點(diǎn):定積分的簡(jiǎn)單應(yīng)用
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:作出兩個(gè)曲線的圖象,求出它們的交點(diǎn),由此可得所求面積為函數(shù)x3-x在區(qū)間[0,1]上的定積分的值的2倍,再用定積分計(jì)算公式加以運(yùn)算即可得到本題答案.
解答: 解:∵曲線y=x3和曲線y=x的交點(diǎn)為A(1,1)、原點(diǎn)O和B(-1,-1)
∴由定積分的幾何意義,可得所求圖形的面積為
S=2
1
0
(x-x3)dx

故選:D.
點(diǎn)評(píng):本題求兩條曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計(jì)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P為函數(shù)y=f(x)的圖象上一點(diǎn),點(diǎn)P的橫坐標(biāo)是2,若在點(diǎn)P處的切線方程是y=x+1,則f′(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-β)cosα-cos(α-β)sinα=
7
25
,且β為第三象限角.則cosβ等于( 。
A、
7
25
B、-
7
25
C、-
24
25
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是的直徑,PB,PE分別切⊙O于B,C,∠ACE=40°,則∠P=( 。
A、60°B、70°
C、80°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校計(jì)劃利用周五下午第一、二、三節(jié)課舉辦語(yǔ)文、數(shù)學(xué)、英語(yǔ)、理綜4科的專題講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學(xué)、理綜不安排在同一節(jié),則不同的安排方法共有( 。
A、36種B、30種
C、24種D、6種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l是直線,α、β是兩個(gè)不同平面,下列命題中的真命題是( 。
A、若l∥α,l∥β,則α∥β
B、若α⊥β,l∥α,則l⊥β
C、若l⊥α,l∥β,則α⊥β
D、若l∥α,α∥β,則l∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}為等差數(shù)列,Sn是其前n項(xiàng)和,且S11=
88π
3
,則tana6=( 。
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖及尺寸如圖所示,則該幾何體的體積為( 。
A、48B、72C、12D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足:z(1+i2013)=i2014(i是虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案