【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點,點為的中點,點的極坐標(biāo)為,求的值.
【答案】(1) (2)
【解析】試題分析:
本題考查參數(shù)方程與普通方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,以及應(yīng)用.(1)把參數(shù)方程消去參數(shù),根據(jù)轉(zhuǎn)化公式求解即可.(2)由直線方程和拋物線方程可得點A,B的坐標(biāo),進(jìn)而得到點的坐標(biāo),把點的極坐標(biāo)化為直角坐標(biāo)可得所求距離.
試題解析:
(1)由消去參數(shù)得,
由曲線的極坐標(biāo)方程,得,
所以曲線的直角坐標(biāo)方程為.
(2)由消去整理得,
設(shè), , ,
則,
∴,
∴,
所以,
∵點的極坐標(biāo)為,
∴點的直角坐標(biāo)為.
∴.
即的值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把日均收看體育節(jié)目的時間超過50分鐘的觀眾稱為“超級體育迷”,已知5名“超級體育迷”中有2名女性,若從中任選2名,則至少有1名女性的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=x2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.
該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的非負(fù)半軸交于點,過點作互相垂直的兩條直線,分別交橢圓于兩點,連接,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點.
(1)求證:MN//平面ACC1A1;
(2)求點N到平面MBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“, 兩項作品未獲得一等獎”;
丁說:“作品獲得一等獎”.
若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎的作品是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ln x,其中a為常數(shù).
(1)當(dāng)a=-1時,求f(x)的單調(diào)遞增區(qū)間.
(2)當(dāng)0<-<e時,若f(x)在區(qū)間(0,e)上的最大值為-3,求a的值.
(3)當(dāng)a=-1時,試推斷方程|f(x)|=是否有實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)y=f(x)滿足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時,y=f(x)單調(diào)遞減,給出以下四個命題:
①f(2)=0;②直線x=-4為函數(shù)y=f(x)圖象的一條對稱軸;③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;④若關(guān)于x的方程f(x)=m在[-6,-2]上的兩根分別為x1,x2,則x1+x2=-8.
其中所有正確命題的序號為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com